

PHILIPPINE ENVIRONMENTAL GOVERNANCE 2 PROJECT (EcoGov 2)

# Strengthening MPA Management in Baler Bay

Training on Marine Sanctuary Monitoring and Evaluation (M&E)





The EcoGov 2 Project is an initiative of the Government of the Philippines, implemented in partnership with the Department of Environment and Natural Resources, Department of the Interior and Local Government, local government units and other stakeholders, funded by the United States Agency for International Development and managed by Development Alternatives, Inc. and its subcontractors:

- Cesar Virata & Associates, Inc. ■
- Deloitte Touche Tohmatsu Emerging Markets ■
- The Marine Environment and Resources Foundation, Inc.
  - The Media Network
  - Orient Integrated Development Consultants, Inc. ■
- Resources, Environment and Economics Center for Studies, Inc. ■

### PHILIPPINE ENVIRONMENTAL GOVERNANCE 2 PROJECT (EcoGov 2)

# Strengthening MPA Management in Baler Bay

Training on Marine Sanctuary Monitoring and Evaluation (M&E)

March 20, 2007

The author's views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government.

## TABLE OF CONTENTS

| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 111                                                          |
| LIST OF APPENDICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . IV                                                           |
| ACRONYMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | v                                                              |
| PART I. MARINE PROTECTED AREA BENCHMARKING, MONITORING AND<br>EVALUATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| Rationale<br>Main Objective<br>Expected Outcome<br>Field Methodologies<br>Results<br>Mapalad-Dibaraybay, Dinalungan Aurora<br>Digisit-Punti-an, Baler, Aurora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>1<br>3<br>3                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |
| PART II. TRAINING ON MARINE SANCTUARY MONITORING AND EVALUATION (M&E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                             |
| EVALUATION (M&E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11<br>12<br>12<br>13<br>14<br>15<br>18<br>19<br>19             |
| EVALUATION (M&E)<br>Rationale<br>Objectives<br>Expected Outcome<br>Participants During the Training Workshop<br>Participants During the Training Workshop<br>Field Methodologies<br>Results<br>Laboratory or Above Water Exercises<br>Feedback on Field Activities<br>Future Plans / Actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11<br>12<br>12<br>12<br>13<br>14<br>15<br>18<br>19<br>19       |
| EVALUATION (M&E)<br>Rationale<br>Objectives<br>Expected Outcome<br>Participants During the Training Workshop<br>Participants During the Training Workshop | 11<br>12<br>12<br>12<br>13<br>14<br>15<br>18<br>19<br>19<br>20 |

### **LIST OF FIGURES**

| Figure 1.  | Arrangement of the five sampling points on the picture frame for video transect analysis                                                                                                                                                 |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2.  | Location of transect sites (red circles) surveyed in<br>Mapalad-Dibaraybay, Dinalungan. The off-shore<br>boundaries of the sanctuary (half-shaded squares) are<br>also presented. Inset map: Aurora Province (EcoGov<br>2003)            |
| Figures 3/ | A,B,C. Trends of hard coral, dead coral and algal cover<br>in three monitoring periods (i.e., August 2003,<br>September 2004 and May 20066                                                                                               |
| Figures 4  | A,B,C. Trends of fish biomass, target biomass and density in three monitoring periods (i.e., August 2003, September 2004 and May 2006                                                                                                    |
| Figure 5.  | Location of transect sites (red circles) surveyed in<br>Digisit-Punti-an proposed Marine Sanctuary, Baler,<br>Aurora. The buffer boundaries of the sanctuary (half-<br>shaded squares) are also presented. Inset map: Aurora<br>Province |

### **LIST OF TABLES**

| Table 1.   | Mean percentage cover of benthic lifeform categories in<br>Mapalapad-Dibaraybay Marine Sanctuary5                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.   | Mean fish density and biomass in Mapalad-Dibaraybay<br>Marine Sanctuary during May 2006 monitoring period7                                                                                                                     |
| Table 3.   | Mean percentage cover of benthic lifeform categories in<br>Digisit-Punti-an proposed Marine Sanctuary10                                                                                                                        |
| Table 4. N | lean fish density and biomass in Digisit-Punti-an<br>proposed Marine Sanctuary during May 2006<br>benchmarking10                                                                                                               |
| Table 5.   | Average % cover of the benthic attributes in Mapalad-<br>Dibaraybay MS and Digisit-Punti-an proposed MS in<br>Baler obtained by the trainees and the trainor using<br>snorkel survey and Video transect survey, respectively14 |
| Table 6.   | Fish abundance data in the proposed MS in Digisit-<br>Punti-an obtained by the trainees using snorkel survey15                                                                                                                 |
| Table 7.   | Fish abundance data in Mapalad-Dibaraybay obtained by trainees using snorkel survey16                                                                                                                                          |
| Table 8.   | Average benthic cover estimation exercises using picture frames simulated as 5m X 5m quadrat16                                                                                                                                 |
| Table 9.   | Fish size estimation of trainee in Baler on laboratory<br>exercise using fish dummies. The value is the deviation<br>from the actual sizes of the fish dummies17                                                               |
| Table 10.  | Fish size estimate of participants in Dinalungan on<br>laboratory exercises using fish dummies. The value is<br>the deviation from the actual sizes of the fish dummies17                                                      |

### **LIST OF APPENDICES**

| Table 1. Percentage cover of the different benthic lifeform<br>categories in Mapalad-Dibaraybay MS using video<br>transect method. (Observer: Lambert Menez)        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 3. Percentage cover of the different benthic lifeform<br>categories in Digisit Punti-an proposed MS using video<br>transect method. (Observer: Lambert Menez) |
| Table 4. Abundance of reef fish species (individuals/500m²)observed in in Mapalad-Dibaraybay and Digisit-Punti-an<br>MS (Observer: Melchor Deocadez)25              |
| Table 5. Reef fish species biomass (g/500m²) observed in<br>Mapalad-Dibaraybay and Digisit-Punti-an MS<br>(Observer: Melchor Deocadez)                              |
| Table 6. Abundance of reef fishes families (individuals/500m²)observed in Mapalad-Dibaraybay and Digisit-Punti-an<br>MS (Observer: Melchor Deocadez)                |
| Table 7. Reef fish family biomass (g/500m²) observed in Mapalad-<br>Dibaraybay and Digisit-Punti-an MS (Observer: Melchor<br>Deocadez)                              |
| Table 8. Reef fish indicatorabundance and biomass observed in<br>Mapalad-Dibaraybay and Digisit-Punti-an MS<br>(Observer: Melchor Deocadez)                         |
| Table 9. Local names of reef fish families translated by theparticipants from Digisit, Baler, Aurora                                                                |
| Table 10. Detailed Schedule of training and survey Activities         33                                                                                            |
| Table 11. Budget for the Training workshop.    35                                                                                                                   |
| Table 12. Materials used in the training workshop                                                                                                                   |

### ACRONYMS

| EcoGov | - The Philippine Environmental Governance Project  |
|--------|----------------------------------------------------|
| FVC    | - Fish Visual Census                               |
| GPS    | <ul> <li>Global Positioning System</li> </ul>      |
| LGU    | - Local Government Unit                            |
| M&E    | <ul> <li>Monitoring and Evaluation</li> </ul>      |
| MPA    | - Marine Protected Area                            |
| MS     | - Marine Sanctuary                                 |
| SB     | - Sangguniang Bayan                                |
| USAID  | <ul> <li>Development Alternatives, Inc.</li> </ul> |
|        |                                                    |

#### THE PHILIPPINE ENVIRONMENTAL GOVERNANCE 2 PROJECT

## PART I. MARINE PROTECTED AREA BENCHMARKING, MONITORING AND EVALUATION

#### RATIONALE

Monitoring and evaluation (M&E) of marine protected areas (MPAs) is crucial for management to be sensitive, pro-active and responsive to the changes that are occurring as the MPA is being implemented. Monitoring is the continued observation of any chosen parameter at regular intervals over time. Ideally, monitoring should be done inside the marine sanctuary (MS), or the no-take zone of the MPA, as well as in adjacent areas outside the MS. It is important to conduct benchmarking activities to serve as baseline information before or immediately after the MPA is established and to which succeeding monitoring data will be compared. The data include coral cover, fish abundance and fish biomass.

#### MAIN OBJECTIVE

The monitoring survey was carried out to evaluate the present ecological conditions of the coral reefs of Mapalad-Dibaraybay Marine Sanctuary. The results of this exercise will be compared from the previous monitoring to evaluate management effectiveness as the marine sanctuary is being implemented.

#### **EXPECTED OUTCOME**

Site report will show present reef conditions and the trend of the chosen parameters such reef fish density and biomass, composition of all reef species and percentage cover of the different benthic attributes. Current management status and issues are also discussed.

#### **FIELD METHODOLOGIES**

For the reef benthos survey, underwater video transects (Osborne and Oxley, in English et al 1997) were used in determining the percentage cover of the different benthic lifeforms. The transect stations were marked by locating their positions using a Global Positioning System (GPS)

instrument. Video transects also allowed for the proper documentation of the sites. For this method, the same transects laid for the fish visual census technique was used. An underwater video was taken while swimming at constant speed, along the transect with the camera lens parallel to the substratum and maintaining a constant distance of about 25 cm above it. The video was recorded at belt of 0.25-m wide. A 50-meter transect line usually takes 8 minutes to record, following the proper speed. The video footages were then downloaded to a computer using the WinDV software (<u>http://windv</u>. mourek.cz). For each transect, a total of 100 still frames were extracted (captured) using the Virtual Dub software (<u>http://www</u>. virtualdub.org) from which 500 points were read for 100 still frames. The frames will serve as the sub samples of the entire transect.

The observer identifies the benthic lifeform using the 28 lifeform categories in English et al. (1997) under 5 points arranged on the screen of the computer monitor (Figure 1)

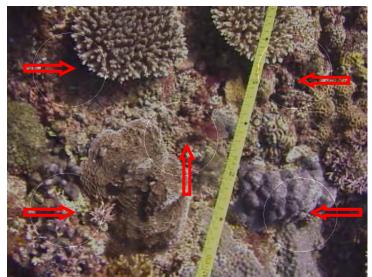



Figure 1. Arrangement of the five sampling points on the picture frame for video transect analysis

Percentage cover was then obtained using the following formula:

Percent cover = Total number of points for lifeform Total number of points for transect

Fish Visual Census (FVC) was used to determine fish abundance and the community structure of the assemblage in the proposed MPA sites. The general procedure involves laying a 50-meter transect line at about 20 feet and at a constant depth contour. The same transect line was also used for the video transect or the snorkel survey for the benthos life form. After the line has been laid, the observers wait for about 5-10 minutes

x 100

before the actual census begins to allow for the disturbed fish community to return to their normal behavior. Starting at one end of the line, all fishes are identified up to species level, their numbers and sizes estimated within a 5m x 5m imaginary quadrat along the transect line before moving to the next 5m mark. The observer swims slowly and stops briefly at every 5-m along the line until the 50m x 10m belt transect line is completed. The faster moving fishes are counted first before the slower moving fishes. Each transect covers an area of 500 m<sup>2</sup> (50m x 10m width). Fish sizes are estimated to the nearest centimeter. Fish density and biomass are then computed using a database program called Reef sum developed by Uychiaoco (2000). Fish biomass is based from the relationship, **W=aL<sup>b</sup>**, where W is the weight in grams; *a* and *b* are the growth coefficient values taken from published length-weight data; and L is the length of the fish in cm (Kulbicki et al. 1993). A species list is generated for each site.

#### **RESULTS**

#### MAPALAD-DIBARAYBAY, DINALUNGAN AURORA

#### Site Description and Transect Locations

Monitoring stations were established inside and adjacent to the Mapalad-Dibaraybay Marine Sanctuary. The sanctuary straddles two barangays of Mapalad and Dibaraybay. The sanctuary covers total of 51 hectares of the core zone or the no-take zone. The reef area is basically one big shoal, the shallow part reaching to about 10 feet and is surrounded by sand. The slope going towards the deeper part is gradual (EcoGov 2003). Seven monitoring stations were monitored (Figure 2).

> Station 1 - 16°7.189'N, 121°55.187'E (inside MPA); 20 feet; slope - 45° Station 2 - 16°7.080'N, 121°55.381'E (inside MPA); 25 feet; slope - 0° Station 3 - 16°7.133'N, 121°55.426'E (inside MPA); 16-18 feet; slope - 5° Station 4 - 16°7.201'N, 121°55.442'E (inside MPA); 20 feet; slope - 70° Station 5 - 16°7.343'N, 121°56.369'E (outside MPA); 20 feet; slope - 5° Station 6 - 16°7.364'N, 121°56.384'E (outside MPA); 20 feet; slope - 5° Station 7 - 16°7.456'N, 121°56.439'E (outside MPA); 20 feet; slope - 30°

#### **Coral Reef Resources**

The reef area in Mapalad-Dibaraybay is mainly dominated by algal assemblages (AA). The average covers of 44.1% and 55.9% for both inside and outside fish sanctuary (Table 1), respectively. Live hard coral cover is generally fair, i.e., within the range of 11-30% (see Gomez et al. 1994) for both inside and outside fish sanctuary (average = 20%). The dominant coral lifeforms are massive, encrusting, submassive and branching coral species while the dominant coral genera are *Porites*, *Acropora*, and belong to faviids groups. Algal cover is higher outside the MPA at 10.9% (see also Appendix Table 1).

#### Trend of benthic cover from 2003-2006

Monitoring sites were established in Mapalad-Dibaraybay Marine Sanctuary on August 2003 and monitored on October 2004 and May 2006 consisting of four stations within the sanctuary and three stations outside the sanctuary approximately a kilometer from it (Appendix Table 2). Table 1 shows a comparison between sampling period which further illustrated in Figures 3A, 2B & 2C highlighting the difference in the amount of lifeform composition for both inside and outside the sanctuary.

Within the sanctuary, the present set of data showed a drop in hard coral cover by as much as 8% relative to the base line information. This was coupled with a 4% increase in dead corals overgrown with algae and a 2% increase in cryptic sponges. A considerable increase of up to 20% in the amount of algae was also observed dominated by algal assemblages and coralline algae.

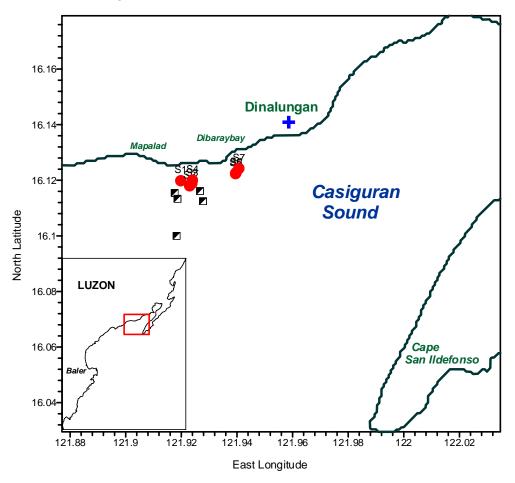



Figure 2. Location of transect sites (red circles) surveyed in Mapalad-Dibaraybay, Dinalungan. The off-shore boundaries of the sanctuary (half-shaded squares) are also presented. Inset map: Aurora Province (EcoGov 2003).

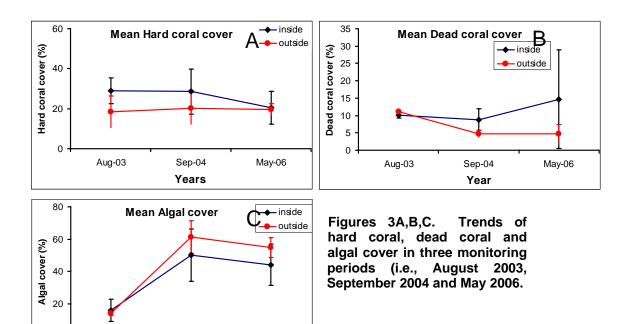

| LIFEFORM CATEGORY      | CODE   | AVERAGE | % COVER |      |            |      |      |  |
|------------------------|--------|---------|---------|------|------------|------|------|--|
| 11                     |        | INSIDEM | PA      | C    | OUTSIDEMPA |      |      |  |
|                        |        | 2003    | 2004    | 2006 | 2003       | 2004 | 2006 |  |
| HARD CORAL             | HC     | 28.9    | 28.6    | 20.5 | 18.5       | 20.1 | 19.7 |  |
| SOFT CORAL             | SC     | 0.8     | 1.0     | 0.7  | 1.1        | 0.8  | 1.3  |  |
| DEAD CORAL/ WITH ALGAE | DC/DCA | 10.1    | 8.8     | 14.7 | 9.0        | 3.1  | 4.7  |  |
| TOTAL ALGAE            | MA     | 15.9    | 50.1    | 44.1 | 14.1       | 61.3 | 54.9 |  |
| OTHER FAUNA            | ОТ     | 0.8     | 0.1     | 0.2  | 0.4        | 0.3  | 0.8  |  |
| TOTAL ABIOTIC          | AB     | 41.5    | 11.3    | 15.9 | 56.0       | 14.3 | 15.6 |  |
| SPONGE                 | SP     | 1.3     | 0.1     | 4.0  | 0.5        | 0.1  | 3.1  |  |
| UNIDENTIFIED           | UNID   | 0.7     | 0.1     | 0.3  | 0.4        | 0.1  | 0.0  |  |
| TOTAL                  |        | 100     | 100     | 100  | 100        | 100  | 100  |  |

Table 1. Mean percentage cover of benthic lifeform categories in<br/>Mapalapad-Dibaraybay Marine Sanctuary.

On the other hand, benthic attributes appeared to be no significant change in hard coral cover along the outside sites with even a slight decrease in the percentage occupied by dead corals over grown by algae. Like the inner site however, there is considerable increase (40%) in the amount of algae with algal assemblages and coralline algae making up 40% and 11% of the bottom cover respectively.

The sanctuary appears to be vigilantly monitored by its stakeholders with villagers regardless of meager resources going after fishers who may have strayed with in the sanctuary boundaries. Villagers have also displayed a high degree of interest towards participating the activities (e.g., workshops and trainings) that would strengthen their skills in managing the resources. The reef community however appears to be impacted greatly by sediment inputs emanating from rivers along the Dinalungan coast. Turbid waters are characteristic of the coastal area particularly during the rainy period, which last more than half the year. Heavily affected were the branching and tabulate *Acropora* although healthy stands of these corals continue to thrive in the area. Massive *Porites* heads with some growing up to a meter above the substrate and submassive and encrusting forms of Goniopora and other faviids being more resistant to silt dominate the reef.

Terrestrial run-off also increases the amount of nutrients entering the reef that could favor the growth of algae and the proliferation of sponges. This has resulted in the increased amount of algae [AA] in the area growing over exposed substrate such as rock, rubble and dead corals. The increase of filamentous algae can hinder the re colonization of the substrate by coral larvae.



#### **Reef Fish Resources**

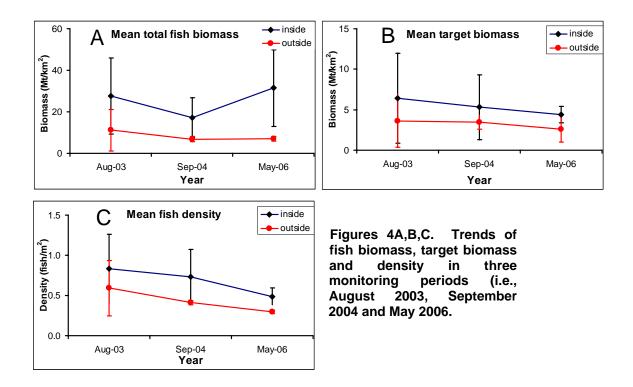
Sep-04 Year

0

Aug-03

In the recent reef fish survey, a total of 113 species belonging to 27 families were recorded in the Mapalad-Dibaraybay Marine Sanctuary. Species richness in the "inside no-take" area stations in ranges from 42 to 49 species (Total species=100) while "outside no-take area" of the marine sanctuary ranges from 25 to 38 species (Total species = 63). The most abundant fish groups were the pomacentrids (damselfishes/palata) followed by acanthurids (surgeonfishes/ labahita), labrids (wrasses/mameng) and caesionids (Fusiliers/ dalagangbukid). The average fish density inside was moderate (Hilomen et al. 2002) ranging from 0.4 to 0.6 individuals per m<sup>2</sup> (average=0.5) while in the outside stations was 0.3 individuals per m<sup>2</sup>. In terms of fish biomass, the inside stations ranges from 10.5 to 50.3 mt/km<sup>2</sup> (average=30.3) while the outside stations ranges from 5.5 to 7.8 mt/m<sup>2</sup> (average=6.5). (Table 2, Appendix tables 4,5,6,7,8)

May-06


Based on the benchmark figures (for species diversity, abundance and biomass) established in the country, the following describe the initial reef fish profile of Mapalad-Dibaraybay based from the sites survey in the Philippines: 1) species diversity falls under low (<48 species) to moderate (within 48 to 75 species) categories; 2) abundance falls within low (within the range of 202 to 676 individuals 1000/m<sup>2</sup>) (Hilomen et al, 2002); and 3) fish biomass estimates on the other hand, falls from medium (between 10.1 to 20.0 mt/km<sup>2</sup>) to high (within 20.1 to 50.0 mt/km<sup>2</sup>) (Aliño and Dantis 1999, Nañola et al., 2002).

#### Trend of fish density and biomass from 2003-2006

Total Fish biomass inside the marine sanctuary decreased in September 2004 but showed an increasing trend in the succeeding monitoring (i.e., from September 2004 to May 2006) (Figs. 4A, B & C). Mean target biomass and fish density on the other hand, both inside and outside the fish sanctuary showed a decreasing trend from the baseline data until the succeeding monitoring periods. There are some positive indications of intervention effects in the sanctuary, some a larger target species greater than 40 cm were recorded (e.g., Plectropomus leopardus of the family Serranidae/groupers). This species were not observed or recorded during the previous monitoring periods. Moreover, some larger sized grouper species were also observed in shallower part of the sanctuary during the recent survey. This indicates that there is possibly a redistribution of fish possibly towards the no-take area. Shallow water sightings were based on personal anecdotal observations, as these areas were not included in the fish visual transects censuses. Perhaps in the disturbed reefs (i.e., outside sanctuary - fished area), fishes may go deeper or move to the undisturbed reef (e.g., MPA). Alternatively during the monitoring period, some of the larger fish were feeding in the shallow areas of the reef and thus were not recorded during the surveys. This suggests that there initial positive indications that enforcement of the sanctuary have shown some effects. On average, fish biomass and density in the sanctuary is higher compared to the outside sanctuary but only fish density showed significantly different (p<0.05).

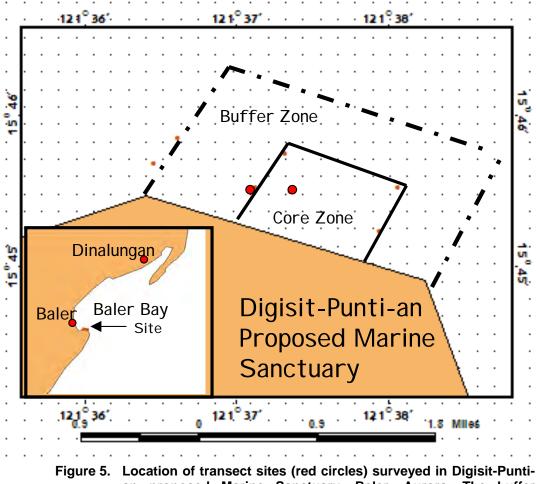
| Table 2. | Mean  | fish | density  | and   | biomass    | in   | Mapalad-Dibaraybay Marine |
|----------|-------|------|----------|-------|------------|------|---------------------------|
|          | Sanct | uary | during M | ay 20 | 006 monito | orin | g period.                 |

|                  | Species    | Family     | Mean Density(individual/m <sup>2</sup> ) |        |           | Mean Biomass (mt/ km <sup>2</sup> ) |        |           |
|------------------|------------|------------|------------------------------------------|--------|-----------|-------------------------------------|--------|-----------|
| Site<br>Name     | (combined) | (combined) | Total<br>(Combined)                      | Target | Indicator | Total<br>(Combined)                 | Target | Indicator |
| Inside<br>(n=4)  | 100        | 27         | 0.5                                      | 0.2    | 0.02      | 30.3                                | 25.2   | 1.3       |
| Outside<br>(n=3) | 63         | 20         | 0.3                                      | 0.1    | 0.02      | 6.5                                 | 3.6    | 0.6       |





#### **Geographic Location**


Baler is the political and economic center of Aurora. It is located some 230 kilometers northwest of Manila via a mountain pass accessible by bus. Baler is host to spectacular geographic formations and is situated on a vast plain at the mouth of Baler Bay, a contiguous segment of the Pacific Ocean.

#### **Site Description and Transect Locations**

The proposed sanctuary in Zabali straddles the coastal villages of Digisit and Puntian. It extends from the rocky shoreline to approximately a kilometer offshore beyond the Anao cluster of islands. Coral communities enclosed by the sanctuary exist along a narrow rock fringe extending to less than 300m form shore. Hard and soft coral colonies together with sponges and algae populate the rocky substratum that proceeds gradually from shore to depths of 3 to 5m, that is approximately 200m from shore before dropping abruptly to a gradual sand slope scattered with rock and rubble at 10 to 15m. The rock shelf with relatively rugged relief is an extension of the mountainous headland with sheer cliffs. Its irregular surface with mounds, fissures, crevices and ledges provide a variety of habitat for both fish and invertebrate species. Two monitoring stations with 2 transect locations were established (Figure 5): Station 1A - 15.75831'N, 121.62287'E (inside MPA); 30 feet; slope - 45 Station 1B - 15.75831'N, 121.62287'E (inside MPA) 30 feet; slope - 45 Station 2A - 15.75861'N, 121.61877'E (outside MPA) 30 feet; slope - 45 Station 2B - 15.75861'N, 121.61877'E (outside MPA) 30 feet; slope - 45

#### **Coral Reef Resources**

Hard coral cover however was low with only 19.6 and 12.4% observed from within and outside the sanctuary, respectively (Table 3,Appendix table 3). Live hard coral cover both inside and outside the proposed fish sanctuary are generally in the fair category (i.e. within the range of 11-30% (see Gomez et al. 1994). Encrusting forms were the more common coral types represented by Diploastrea, Mycedium, Porites, Goniastrea and other faviids. Dead coral overgrown with algae accounted for 12.7 and 9.6% of the bottom areal cover, respectively. A relatively high amount of algae dominated by algal assemblages, the calcareous macro-algae, Halimeda and coralline algae were found growing in the area.



igure 5. Location of transect sites (red circles) surveyed in Digisit-Puntian proposed Marine Sanctuary, Baler, Aurora. The buffer boundaries of the sanctuary (half-shaded squares) are also presented. Inset map: Aurora Province.

9

| LIFEFORM CATEGORY      | CODE   | AVERAGE % COVER |             |  |  |
|------------------------|--------|-----------------|-------------|--|--|
|                        |        | INSIDE MPA      | OUTSIDE MPA |  |  |
| HARD CORAL             | HC     | 19.6            | 12.4        |  |  |
| SOFT CORAL             | SC     | 3.0             | 10.0        |  |  |
| DEAD CORAL/ WITH ALGAE | DC/DCA | 12.7            | 9.6         |  |  |
| TOTAL ALGAE            | MA     | 49.9            | 54.1        |  |  |
| OTHER FAUNA            | ОТ     | 0.4             | 0.8         |  |  |
| TOTAL ABIOTIC          | AB     | 3.5             | 1.8         |  |  |
| SPONGE                 | SP     | 10.9            | 11.3        |  |  |
| UNIDENTIFIED           | UNID   | 0.0             | 0.0         |  |  |
| TOTAL                  |        | 100.0           | 100.0       |  |  |

 
 Table 3. Mean percentage cover of benthic lifeform categories in Digisit-Punti-an proposed Marine Sanctuary.

#### **Reef Fish Resources**

For the baseline survey, a total of 71 species belonging to 25 families were recorded in the Digisit-Punti-an proposed marine sanctuary. Species richness for the proposed inside-sanctuary stations ranges from 37 to 35 species (Total species=56) while those in the proposed outside the fish sanctuary ranges from 29 to 38 species (Total species = 47). The most abundant fish groups were the pomacentrids (damselfishes/palata) followed by acanthurids (surgeonfishes /labahita) and labrids (wrasses/Labayan), respectively. The average fish density inside was moderate ranging from 0.3 to 0.6 individuals per m<sup>2</sup> (average=0.5) while in the outside stations was low range from 0.4 to 0.5 (Average=0.4) individuals per m<sup>2</sup>. In terms of fish biomass, the inside stations ranges from 10.1 to 15.9 mt/km<sup>2</sup> (average=13.0) while the outside stations ranges from 4.3 to 8.4 mt/m<sup>2</sup> (average=6.3). (Table 4, Appendix tables 4,5,6,7,8)

Based on the benchmark figures established in the country, the following describe the initial reef fish profile of Digisit-Punti-an proposed marine sanctuary based from the sites surveyed in the Philippines: the species diversity falls under low (<48 species) categories and abundance falls within low (within the range of 202 to 676 individuals per 1000m<sup>2</sup>) (Hilomen et al, 2002) while fish biomass estimates falls from medium category (within 10.1 to 20.0 mt/km<sup>2</sup>) (Aliño and Dantis 1999, Nañola et al., 2002).

 Table 4. Mean fish density and biomass in Digisit-Punti-an proposed Marine

 Sanctuary during May 2006 benchmarking.

|                  | Species    | Family     | Mean Densi          | ty(indivi | dual/m²)  | Mean Biomass (mt/ km <sup>2</sup> ) |        |           |  |
|------------------|------------|------------|---------------------|-----------|-----------|-------------------------------------|--------|-----------|--|
| Site<br>Name     | (combined) | (combined) | Total<br>(Combined) | Target    | Indicator | Total<br>(Combined)                 | Target | Indicator |  |
| Inside<br>(n=2)  | 56         | 22         | 0.46                | 0.11      | 0.03      | 13.0                                | 7.4    | 2.1       |  |
| Outside<br>(n=2) | 47         | 24         | 0.43                | 0.03      | 0.01      | 6.3                                 | 1.5    | 0.4       |  |

### PART II. TRAINING ON MARINE SANCTUARY MONITORING AND EVALUATION (M&E)

#### RATIONALE

Three (4) Marine Protected Areas (MPAs) have been established and one additional proposed MPA in Aurora province, with the technical assistance of the Philippine Environmental Governance Project (EcoGov2), i.e., namely Ditangol and Mabudo in Dinalungan, Dibutunan in Dipaculao and the proposed Zabali marine sanctuary in Digisit-Punti-an in Baler. Among these MPAs, the Digisit-Punti-an is not yet officially established. It is still waiting for legitimization by the adoption of MPA plan through the execution of ordinance of the Sangunihan Bayan (SB). All the others however, are already implementing activities and programs in line with the MPA plan and ordinance through its management bodies with the support of the local government and other existing agencies. Aside from the law enforcement, the MPA management body recognizes the need of the M&E program that would assess the level of implementation and gauge the progress of the intervention. This program would provide the regular reporting and feedbacking of the results to the community and the LGUs. This will generate policies, support and funding, which determine the various resources needed to sustain the project. Furthermore, the integration of the M&E as a regular activity would provide information on the extent of benefits that the project provides the society as a whole.

In the training workshop, the MPA management bodies (i.e., monitoring and evaluation committee) were trained using the community-based monitoring and evaluation techniques. They were provided hands-on experience in various tools and strategies including the data processing, analysis and reporting which they could use in the management. Moreover, the training came up with the standardized method for the MPA managers for the future data storage and management. Likewise, the workshop also capacitate the existing support groups such as the inter-LGU coastal resource management committee of the province and the ASCOT which provide technical assistance in the conduct of M&E in the respective MPAs. The involvement of the ILCRMC and ASCOT in the MPA implementation is critical in hastening collaboration and coordination among existing MPAs, which provide a venue for networking and lesson sharing of the MPA managers.

Although capacitating local communities in M&E is important, there is paucity of skilled manpower from the technical support group. The

EcoGov2 Project tries to address this gap by seizing opportunities wherein the skills of local technical groups (i.e. ILCRMC, ASCOT) can be further enhanced in conjunction with meeting the focal project targets such as in the strengthening of MPA management.

#### **OBJECTIVES**

The specific objectives of the training are:

- 1. To build capacities of local management bodies through M&E and initiate linkages of their performance monitoring,
- 2. To provide the support mechanisms for M&E and performance evaluation procedures by enhancing the skills of potential local service providers or technical teams through standardization exercises,
- 3. To facilitate common understanding and cooperation among local MPA management bodies towards the establishment of an MPA network system as part of the strengthening and sustainable mechanisms for good environmental governance.

#### **EXPECTED OUTCOME**

The result of this training workshop was to strengthen the management of MPAs as seen in the eventual results obtained from the annual M&E and PMP activities that was conducted by the marine sanctuary monitoring teams. Specifically the training workshop produced (a) Process documentation report on the M&E training, (b) Site report for Dinalunagan MPAs and (c) Agreements on M&E and performance evaluation system as part of a guide manual for M&E and PMP of MPA standards system supported by EcoGov2.

#### PARTICIPANTS DURING THE TRAINING WORKSHOP

The participants of the training workshop were composed of the Marine Sanctuary monitoring team of six (6) members from each MPA area (i.e. Dinalungan, Dipaculao and Baler) from the local communities, four (4) from San Luis, Two (2) from ILCRMC (M&E Committee), Three (3) from ASCOT and four (4) facilitators/trainors.

#### **FIELD METHODOLOGIES**

#### **Snorkel Survey**

This method is used mainly to determine the percent cover of the benthic lifeforms: (1) hard coral (HC), (2) soft coral (SC), (3) dead coral (DC) and dead coral with algae (DCA), (4) Marine plants including macro-algae (MA), turf algae (TA), coralline algae (CA), (5) Non-living or abiotic components such rock (RCK), rubble (R), sand (S) and silt (SI), (6) Other fauna (OT) such as echinoderms, mollusks over a more specified area. Unlike the manta tow, this method will give a more detailed description of the reef, albeit at a smaller scale. A 50-meter transect was lain at a depth of 20 ft. The observer will then estimate the percent cover of each of the benthic attribute within a 5-m x 5-m imaginary quadrat, starting from 0-m until the whole transect was sampled. The estimates from the ten sampled quadrats over the 50-meter line were then averaged to get the benthic description for that particular site.

#### Fish Visual Census (FVC)

This method is used to determine fish abundance and assemblage in a specified area of observation. The general procedure involves observations over a 50-meter transect line at about a constant 20 feet depth contour. It is usually done using the same transect lain for the snorkel survey method described above. A 5-10 minutes gap between the line laving and actual census is allowed for the disturbed fish community to return to their normal behavior. Starting at one end of the line, two observers (one on either side of the transect line) will record estimated counts and sizes of fishes in their local names, observing 5-m to his side of the transect and moving forward until the next 5-m mark. Both observers swim slowly forward and briefly stop at every 5-m along the line until the transect line completed. The faster moving fishes were counted first before recording the slower moving fishes were counted. Each transect covers an area of 500  $m^2$  (50m x 10m width). Initially, the trainees were taught to estimate the size of each fish according to size classes. The size classes are: 0-10 cm (1-4 inches), 11-20 cm (5-8 inches), 21-30 cm (9-12 inches), and more than 30 cm (>12inches). This method is usually taught to fishers and other non-technical persons. The other more scientific way to estimate sizes will require the observer to estimate the size of each fish to the nearest centimeter. This will be particularly useful when calculating for fish biomass. However, the trainees may only be able to do this after future constant field practice.

Standardization of local fish names and sizes was done during the lecture. The local fish names are presented in Appendix table 9). Fish dummies were used to practice size estimation both in land (during the lecture) and underwater (during actual survey).

#### RESULTS

For the snorkel survey, the trainees tend to over-estimate the hard coral cover compared to the estimate of the experienced trainor, who made observation simultaneously with the trainees. This was probably due to mis-identification of the benthic categories like dead coral with algae (DCA) as live hard coral and some DCA as abiotic or non-living (i.e., Rock) (Table 5). This problem can be resolved with more practice on the part of the trainees during the future monitoring and evaluation period.

The trainees were able to record 16 reef fish families in Digisit-Punti-an proposed fish sanctuary. Mangadlit and Scaridae (Parrotfishes/ Molmol) were the dominant fish families. There were also several moros and Salmonete (Mullidae/goatfish). Meanwhile, the trainees in Dinalungan were able to also record only 13 reef fish families. Among of these, the dominant families they identified include Palata (*Pomacentridae/damselfish*), labahita (*Acanthuridae*/ Surgeonfish) and moros. Observations became limited due to poor water visibility and strong current velocity in the area during the survey (near late afternoon).

| LIFEFORM            | CODE   | Mapalad-I | Dibaraybay | Digisit-Punti-an |          |  |
|---------------------|--------|-----------|------------|------------------|----------|--|
|                     |        | Trainor   | Trainees   | Trainor          | Trainees |  |
| Hard coral          | HC     | 20.1      | 41.5       | 16.0             | 21.6     |  |
| Soft Coral          | SC     | 1.0       | 5.5        | 6.5              | 18.2     |  |
| Dead Coral w/ Algae | DC/DCA | 9.1       | 28.1       | 11.2             | 28.1     |  |
| Other fauna         | ОТ     | 4.0       | 7.1        | 11.7             | 0.1      |  |
| Plant/ algal        | MA/AA  | 49.5      |            | 52.0             |          |  |
| assemblages         |        |           |            |                  |          |  |
| Abiotic component   | AB     | 15.8      | 17.4       | 2.7              | 32.0     |  |
| TOTAL               |        | 100       | 100        | 100              | 100      |  |

Table 5. Average % cover of the benthic attributes in Mapalad-Dibaraybay MS and Digisit-Punti-an proposed MS in Baler obtained by the trainees and the trainor using snorkel survey and Video transect survey, respectively.

The trainees in Dinalungan and Baler also recorded the abundance and sizes of particular fish families. Tables 6 and 7 show the results of the fish visual census by the trainees using snorkel survey. The records of different observers for the same transect station are presented. In Digisit-Puntian-an trainees identified fish abundance of 120 fish/250m<sup>2</sup> or this can be translated to 0.5 fish/m<sup>2</sup>. Whereas trainees in Mapalad-Dibaraybay, observed fish at 150 fish/250m<sup>2</sup> or 0.6 fish /m<sup>2</sup>. The result was comparable to the trainors in terms of fish abundance estimates. But it only differs on the number of fish groups identified.

Improvement of trainee's estimation of fish survey was noticed in the participants from Dinalungan since some of them were involved during the training in EcoGov1. Their data recorded in terms of size and count

was more reliable compared to some new trainees. This indicates that with more practice the trainees can improve to attain greater accuracy and precision in data gathering and eventually in the processing and evaluation of their data and feedbacking of information.

#### LABORATORY OR ABOVE WATER EXERCISES

The trainees were able to estimate the percent cover of all 6 benthic lifeforms (Table 8) using picture frames simulated as 5m X 5m quadrat while projected on the screen prior to field applications. Based on the trainor estimates, in terms of hard coral cover (HC) majority of the trainees tend to be underestimates. But when it comes to other benthic lifeforms, most of the trainees committed mistakes by interchanging dead coral with algae (DCA) category to rocks (RCK) as abiotic component while some errors were made on the hard coral to be soft coral or vice versa. Thus, trainees had to know how to estimate percentage covers of lifeform categories but primarily would need or enhance their skills in identifying different benthic lifeforms categories to come up with consistent and comparable estimates of percent bottom cover.

|                |                |    | PAR | PARTICIPANTS |       |       | Average |
|----------------|----------------|----|-----|--------------|-------|-------|---------|
| Fish Family    | Common Name    | 1  | 2   | 2 3          | 3 4   |       |         |
|                | Mangadlit      | 25 | 9   | 45           | 10    | 8     | 9 22    |
| Scaridae       | Molmol         | 30 | 10  | 18           | 30    | 8     | 8 22    |
| Kyphosidae     | llak           | 20 | 8   |              | 5     | 3     | 3 8     |
|                | Bunod          | 20 |     |              | 1     | 2     | 1 5     |
|                | Moros          | 20 | 14  |              | 50    | 8     | 4 21    |
| Caesionidae    | Solid          | 5  |     |              | 20    | 2     | 56      |
| Lutjanidae     | Guret          | 20 |     |              | 2     | 2     | 2 6     |
| Balistidae     | Pakoy          | 10 | 13  |              | 1     | 2     | 4 6     |
| Mullidae       | Salmonete      | 30 |     |              | 4     | 3     | 4 9     |
| Pomacenridae   | Palata         |    | 5   |              |       |       | 5 1     |
| Siganidae      | Mataway        |    | 7   | 22           |       | 2     | 9 7     |
| Holocentridae  | Pulahan        |    | 6   |              |       |       | 6 2     |
| Labridae       | Mameng         |    | 5   |              |       |       | 5 1     |
| Atherinidae    | Guno           |    |     | 2            |       |       | 2 1     |
| Acanthuridae   | Labahita       |    |     | 7            |       |       | 7 2     |
| Chaetodontidae | Alibangbang    |    |     | 5            |       |       | 5 1     |
| Total abundan  | ce fish/250m2) |    | 180 | 77           | 99 12 | 23 47 | 9 120   |

Table 6. Fish abundance data in the proposed MS in Digisit-Punti-an obtained by the trainees using snorkel survey.

|                                              |                | PARTICIPANTS |    |     |     |    |       |         |  |  |  |  |
|----------------------------------------------|----------------|--------------|----|-----|-----|----|-------|---------|--|--|--|--|
| Fish Family                                  | Common<br>Name | 1            | 2  | 3   | 4   | 5  | Total | Average |  |  |  |  |
|                                              | Moros          | 29           | 18 |     |     |    | 47    | 9       |  |  |  |  |
| Scaridae                                     | Molmol         | 7            | 11 | 76  | 17  | 18 | 129   | 26      |  |  |  |  |
| Balistidae                                   | Pakoy          | 1            |    |     | 27  |    | 28    | 6       |  |  |  |  |
| Pomacentridae                                | Palata         |              | 45 | 200 | 20  | 3  | 268   | 54      |  |  |  |  |
| Serranidae                                   | Lapu-lapu      |              | 4  | 3   | 1   |    | 8     | 2       |  |  |  |  |
| Acanthuridae                                 | Labahita       |              |    | 108 | 15  | 45 | 168   | 34      |  |  |  |  |
| Chaetodontidae                               | Alibangbang    |              |    | 20  | 21  |    | 41    | 8       |  |  |  |  |
| Siganidae                                    | Balawis        |              |    |     | 14  |    | 14    | 3       |  |  |  |  |
| Holocentridae                                | Siga           |              |    |     | 15  |    | 15    | 3       |  |  |  |  |
| Pomacantidae                                 | Maredi         |              |    |     | 20  |    | 20    | 4       |  |  |  |  |
|                                              | Parakpakin     |              |    | 2   |     |    | 2     | 0       |  |  |  |  |
|                                              | Bagusan        |              |    | 9   |     |    | 9     | 2       |  |  |  |  |
| Labridae                                     | Mameng         |              |    | 3   |     |    | 3     | 1       |  |  |  |  |
| Total abundance<br>(fish/250m <sup>2</sup> ) |                | 37           | 78 | 421 | 150 | 66 | 752   | 150     |  |  |  |  |

## Table 7. Fish abundance data in Mapalad-Dibaraybay obtained by trainees using snorkel survey.

## Table 8. Average benthic cover estimation exercises using picture frames simulated as 5m X 5m quadrat.

| Benthic    | Trainor |        | Trainees |         |        |      |       |        |        |  |  |  |  |
|------------|---------|--------|----------|---------|--------|------|-------|--------|--------|--|--|--|--|
| Lifeforms  |         |        |          |         |        |      |       |        |        |  |  |  |  |
|            | Mel     | Rommel | Teddy    | Rogelio | Reymar | Gigi | Amado | Bencio | Rodolf |  |  |  |  |
| Hard coral | 35.5    | 20.5   | 20.8     | 16.0    | 34.6   | 17.0 | 24.5  | 21.0   | 20.0   |  |  |  |  |
| Soft coral | 7.5     | 21.0   | 6.3      | 8.5     | 6.0    | 15.5 | 17.0  | 19.0   | 20.0   |  |  |  |  |
| Dead coral |         |        |          |         |        |      |       |        |        |  |  |  |  |
| W algae    | 14.0    | 11.5   | 10.5     | 43.0    | 28.0   | 33.0 | 40.5  | 17.0   | 23.3   |  |  |  |  |
| Other      |         |        |          |         |        |      |       |        |        |  |  |  |  |
| Animals    | 0.6     | 6.0    | 0.3      | 1.0     | 0.5    | 6.0  | 18.0  | 1.0    | 0.0    |  |  |  |  |
| Plants     | 7.5     | 8.0    | 17.9     | 6.0     | 3.0    | 2.5  | 0.0   | 10.0   | 14.2   |  |  |  |  |
| Abiotic    | 34.9    | 33.0   | 44.2     | 25.5    | 27.9   | 26.0 | 0.0   | 32.0   | 22.5   |  |  |  |  |
| Total      | 100     | 100    | 100      | 100     | 100    | 100  | 100   | 100    | 100    |  |  |  |  |

For fish size estimation (i.e., above water exercises), the trainees were able to estimate fish dummies and compared to the actual sizes. The difference is the deviation from the actual size of fish dummies. The negative sign suggests being under-estimated while positive sign suggests being over-estimated and zero is the precise estimation. The deviation of  $\pm 1$  inches or  $\pm 2$  cm) from the actual size is good estimates. The results of the laboratory exercise show that 60% in Baler participants

shows to be under estimated and 40% tend to be over estimated while in Dinalungan majority them tend to be under-estimated as shown by the negative sign (See Tables 9 & 10). The wide range of variance of estimated between observers can be corrected with more practice especially underwater exercises practicum in the field.

| Dummies     |       |       |          | Traiı   | nees    |        |      |        |  |
|-------------|-------|-------|----------|---------|---------|--------|------|--------|--|
| No.<br>(cm) | Teddy | Amado | Florante | Rodolfo | Rogilio | Raymar | Gigi | Bencio |  |
| 38 (40)     | -5    | -10   | +8       | -15     | -8      | +5     | +5   | 0      |  |
| 32 (20)     | 0     | -3    | +10      | -10     | -2      | +5     | +5   | 0      |  |
| 35 (24)     | -6    | -4    | +13      | -4      | -4      | +4     | +6   | -1     |  |
| 43 (29)     | -2    | +6    | +16      | +1      | -4      | +6     | +1   | +6     |  |
| 20 (10)     | +2    | 0     | +2       | -5      | -2      | +1     | 0    | 0      |  |
| 29 (10)     | 0     | -6    | -6       | -7      | -4      | 0      | +2   | 0      |  |
| 25 (29)     | +1    | +11   | +6       | -1      | -1      | +13    | +10  | +11    |  |
| 31 (17)     | 0     | -5    | +21      | -9      | -3      | +4     | +3   | +3     |  |
| 17 (17)     | +1    | -2    | -2       | -11     | -1      | +2     | +3   | 0      |  |
| 40 (13)     | -2    | -3    | -10      | -9      | -3      | +2     | +2   | +2     |  |

# Table 9. Fish size estimation of trainee in Baler on laboratory exerciseusing fish dummies. The value is the deviation from the actualsizes of the fish dummies.

Table 10.Fish size estimate of participants in Dinalungan on laboratory exercises using fish dummies. The value is the deviation from the actual sizes of the fish dummies.

| Dummies   |       |      |      | Traiı  | nees |      |          |       |
|-----------|-------|------|------|--------|------|------|----------|-------|
| No.       | Arnel | Mar  | Levy | Doming | Jon  | Ed   | Trainee1 | Ferdi |
| (Inches)  |       |      |      |        |      |      |          |       |
| 37 (10)   | -3    | -2   | -4   | -3     | -4   | -2   | -4       | -2    |
| 12 (13)   | -2    | -1   | -1   | -3     | -1   | -2-1 | -5       | -3    |
| 29 (4)    | +1    | -2   | -2   | -2     | -2   | 0    | -1       | -2    |
| 25 (11.5) | -5.5  | -1.5 | -3.5 | -1.5   | -2.5 | -0.5 | -1.5     | -5.5  |
| 47 (5.5)  | -1.5  | -1.5 | -1.5 | -2     | -1.5 | +0.5 | -3.5     | -1.5  |
| 21 (9.5)  | -3.5  | -1.5 | -3.5 | -2.5   | -3.5 | -0.5 | -2       | -3.5  |
| 1 (12)    | -2    | -2   | -2   | -4     | -2   | +1   | -1       | -5    |
| 20 (4)    | 0     | -1   | -1   | -2     | -1   | +1   | -1       | -1    |
| 2 (5)     | -2    | -1   | -2.5 | -3     | -1   | -0.5 | -1       | -2    |
| 8 (8)     | -3    | -1   | -3   | -4     | -1   | 0    | -3       | -8    |

#### **FEEDBACK ON FIELD ACTIVITIES**

Overall, trainees were able to figure out on their own the inherent strength and weaknesses of the methods introduced. Some of the problems that they encountered during the field practice include the following:

- Some trainees (e.g., non-fishers) had a hard time identifying reef fish families. This was, however, not a problem for fisher's participants. There should be certainty on the type of fish that is seen in the censuses. If uncertain, try to describe or draw the fish observed instead. This will afford validation as they return to laboratory to look through reference materials and discuss with other team members.
- 2. They suggest that to be come more familiar and effective estimation of fish sizes and counting fish, follow up training in their respective MPA site will be undertaken.
- 3. The trainees had difficulty in distinguishing between benthic lifeform categories. They realize that they really need more practice to have more reliable results.
- 4. Some participants that already trained previous training (e.g., EcoGov1) on M&E (i.e., Dinalungan trainees), which had more reliable and better in fish identification and estimation of benthic lifeforms cover compared to the first timer. This suggests that follow up training in the field surveys is important to enhance local skills.
- 5. They found it difficult to conduct the field survey in turbid waters like that of the situation in Mapalad-Dibaraybay MPA at some particular times. Survey should be done when water is not turbid. They said that they would try to do the survey in the calmer sea conditions in their sites.
- 6. More sampling sites or transects should be done during actual monitoring for more quality monitoring results.
- 7. Participants observed that data summarization is simple and easy to do.

#### **FUTURE PLANS / ACTIONS**

#### DINALUNGAN AND DIPACULAO

To improve monitoring skills in part of the monitoring team, they will have a more regular monitoring practice and to expand the current monitoring team by eliciting more participation by the community through IEC and reecho of the newly learned methodologies. The acquisition of equipment that would be used for the monitoring will be made before the monitoring activities. A follow-up will be made with the LGUs on the purchase of the patrol boat. They will make a list of request for equipment needed that will be integrated on the budget for 2007. There is an agreement among the members of MPA management team to set the monitoring program biannually during the months of August and March. At least four (4) transects will be done inside and outside the MPA. Documentation and reporting of results will be done regularly and will be submitted to the Mayor, MAO and ILCRMC.

#### DIGISIT-PUNTI-AN, ZABALI, BALER

In Baler, they need to fast track the MPA ordinance. The public hearing will be conducted on June 15, 2006, 8:00 in the morning at the Fish Port to come up with a general agreement with the community on these provisions. The resolution from the fisherfolk federation will be prepared on May 28 through ASCOT seeking LGU prioritization of the activity. Acquisition of equipment for the MPA monitoring will be taken cared of once the ordinance is enacted. ASCOT signified support by allowing the MPA body to use the equipment available in their CRM office. The MPA body agreed to conduct the monitoring bi-annually during February and August and come up with the reports and submitted to the MAO and ILCRMC. Massive IEC will also be made to generate community support while feedbacking the results of the monitoring activities.

Regular practice will be made by the MPA monitoring team on fish identification and benthic cover estimations. The ASCOT will provide assistance for the conduct of the activities on establishing monitoring sites. The MPA managers will share their experiences by networking among MPAs. An incentive system will be developed to encourage active participation and recognition of the MPA managers such as best MPAs. This can be done during the conduct of annual festival of MPAs.

#### ILCRMC / ASCOT SUPPORT TO MPA IMPLEMENTATION

The monitoring reports will be integrated in the fisheries database that is being developed by ILCRMC and ASCOT for management purposes. Then the ILCRMC and ASCOT can provide assistance technically during the conduct of actual monitoring activities. They will hold annual MPA workshops and site visits to enhance collaboration among MPAs and advocate sharing of experiences. They will also develop an incentive system for recognition and appreciation of best performing and effective MPAs. The ILCRMC will include in its yearly budget the assistance in conduct of MPA monitoring and MPA annual affairs. The group will also do acquisition of equipment, which will likewise be included in the yearly budget.

### **R**EFERENCES

- Aliño, P.M., Dantis A.L., 1999. Lessons from the biodiversity studies in reefs: Going beyond quantities and qualities of marine life. In W.L Campos Proceedings of the Symposium on Marine Biodiversity in the Visayas and Mindanao (p. 78-85). Univ. of the Philippines in the Visayas.
- EcoGov 2003. Marine Protected Area Monitoring and Evaluation: Benchmarking and Training (Luzon and Visayas). Philippine Environmental Governance Program (EcoGov). Department of Environment and Natural Resources/ Development Alternatives. Inc. and Marine Environment and Resource Foundation Inc. October 2003. pp. 51
- English, S., C. Wilkinson and V, Baker (eds). 1997. Survey manual for tropical marine resources second edition. Australian Institute of Marine Science, ASEAN-Australia Marine Science Project, 390 pp.
- Kulbicki, M., G. Mou Tham, P. Thollot and L. Wanitez. 1993. Length-weight relationships of fish from the lagoon of New Caledonia. Naga. ICLARM Quarterly 16: (2-3): 26-30.
- Gomez, E.D., P.M. Aliño, H.T. Yap and W.Y. Licuanan. 1994. A review of the status of Philippine reefs. Mar. Poll. Bull. 29:62-68.
- Hilomen V. V., C. L. Nañola and A. L. Dantis. 2000. Status of Philippine reef fish communities. Paper presented in the Workshop on the status of Philippine Reefs. January 24, 2000. Marine Science Institute, University of the Philippines, Diliman, Quezon City
- Nañola, C.L. Jr., P.M. Aliño, A.L. Dantis, M.C.G. Rañola, V.V. Hilomen and J.P.B. Cabansag. 2002. Understanding Philippine Reef Fishes: A Key to Fisheries Management and Marine Biodiversity Conservation. In Aliño, P.M., E.F.B. Miclat, C.L. Nañola Jr., H.A. Roa-Quiaoit and R.T. Campos (eds.) 2002. Atlas of Philippine Coral Reefs. Philippine Coral Reef Information (PhilReefs). Goodwill Trading Co., Inc. (Goodwill Bookstore), Quezon City, Philippines.
- Osborne, K. and W.G. Oxley. 1997. Sampling benthic communities using video transects. In: English, S., C. Wilkinson and V, Baker (eds). Survey manual for tropical marine resources second edition. Australian Institute of Marine Science, ASEAN-Australia Marine Science Project, 390 pp.
- Uychiaoco, A.J. 2000. ReefSum Program. University of the Philippines Marine Science Institute, Diliman, Quezon City, Philippines, (unpublished).

### **Appendices**

|                       |      |       | Inside Sa | Outside Sanctuary |       |       |       |       |  |
|-----------------------|------|-------|-----------|-------------------|-------|-------|-------|-------|--|
| LIFEFORM              | Code | MPLT1 | MPLT2     | MPLT3             | MPLT4 | MPLT5 | MPLT6 | MPLT7 |  |
| Hard coral            |      | 13    | 14.6      | 30.8              | 23.4  | 17.6  | 18.6  | 22.8  |  |
| Acropora              |      | 0.4   | 5         | 0                 | 0.6   | 0     | 0.8   | 0.4   |  |
| Acropora branching    | ACB  | 0.4   | 4.6       |                   | 0.2   |       | 0.2   | 0.4   |  |
| Acropora tabulate     | ACT  |       | 0.4       |                   | 0.4   |       | 0.6   | 1     |  |
| non-Acropora          |      | 12.6  | 9.6       | 30.8              | 22.8  | 17.6  | 17.8  | 22.4  |  |
| Coral branching       | СВ   | 1.8   |           | 0.4               | 1.4   | 0.8   |       | 0.4   |  |
| Coral encrusting      | CE   | 5     | 3.6       | 12.6              | 7.2   | 6     | 6.6   | 5.2   |  |
| Coral foliose         | CF   | 1.6   |           | 0.2               |       |       |       | 4.8   |  |
| Coral massive         | СМ   | 4     | 5         | 15.6              | 10.8  | 10.4  | 8.2   | 8.8   |  |
| Coral submassive      | CS   | 0.2   | 1         | 2                 | 3.4   | 0.4   | 3     | 3     |  |
| Coral mushroom        | CMR  |       |           |                   |       |       |       | 0.2   |  |
| Dead coral with algae | DCA  | 24.6  | 29.2      | 3.4               | 1.6   | 2.6   | 3.6   | 7.8   |  |
| Soft Coral            | sc   | 0.6   | 0.6       | 0.8               | 0.8   | 3     | 0.4   | 0.4   |  |
| Sponge                | SP   | 1.6   | 2.8       | 5.2               | 6.2   | 2     | 2.8   | 4.4   |  |
| Zoanthids             | zo   |       |           | 0.2               | 1     |       | 1.2   | 0.4   |  |
| Other Living          | oπ   |       | 0.2       |                   | 0.6   | 0.2   | 0.4   | 0.2   |  |
| Algae                 |      | 43.8  | 27        | 47.8              | 57.8  | 61.2  | 54.6  | 49    |  |
| Algal assemblage      | AA   | 26.8  | 16.4      | 32.2              | 35.4  | 44.2  | 35.8  | 39.6  |  |
| Coralline alggae      | CA   | 10.4  | 9         | 15.4              | 20.2  | 12.2  | 13.6  | 7.2   |  |
| Halimeda              | HA   | 6.4   | 1.6       | 0.2               | 2.2   | 4.8   | 5.2   | 2.2   |  |
| Macro algae           | МА   | 0.2   |           |                   |       |       |       |       |  |
| Abiotic               |      | 16.4  | 25.6      | 11.8              | 9.6   | 13.4  | 18.4  | 15    |  |
| Rubble                | R    | 6.6   | 5.2       | 2.4               | 0.6   |       | 1.6   | 0.6   |  |
| Rock                  | RCK  |       | 0.2       | 5.4               | 0.8   | 0.2   | 0.4   |       |  |
| Sand                  | S    | 4.8   | 3.6       | 3.8               | 3.4   | 4.8   | 8.6   | 2.2   |  |
| Silt                  | SI   | 5     | 16.6      | 0.2               | 4.8   | 8.4   | 7.8   | 12.2  |  |

Table 1. Percentage cover of the different benthic lifeform categories in Mapalad-Dibaraybay MS using video transect method. (Observer: Lambert Menez). Table 2. Percentage cover of the different benthic lifeform categories in Mapalad-Dibaraybay MS in three monitoring period using video transect method. (Observers: Hazel arceo (2003), Melchor Deocadez (2004) and Lambert Menez (2006)).

| LIFEFORM CATEGORY      | CODE   |               |               | AVERAGE        | % COVER      |               |               |
|------------------------|--------|---------------|---------------|----------------|--------------|---------------|---------------|
|                        |        | 11            | NSIDEMPA      |                | OL           | JTSIDE MPA    |               |
|                        |        | 2003          | 2004          | 2006           | 2003         | 2004          | 2006          |
| Hard Corals            |        |               |               |                |              |               |               |
| Branching Acropora     | ACB    | 6.33          | 7.50          | 1.30           | 0.07         | 0.13          | 0.20          |
| Submassive Acropora    | ACS    | 0.00          | 0.00          | 0.00           | 0.00         | 0.13          | 0.00          |
| Table Acropora         | ACT    | 0.53          | 0.35          | 0.20           | 0.00         | 0.07          | 0.20          |
| Coral branching        | СВ     | 0.00          | 0.70          | 0.90           | 0.17         | 0.00          | 0.40          |
| Coral encrusting       | CE     | 3.95          | 1.10          | 7.10           | 1.93         | 0.73          | 5.93          |
| Coral foliose          | CF     | 0.00          | 0.95          | 0.45           | 0.00         | 0.00          | 1.60          |
| Heliopora (Blue coral) | CHL    | 0.00          | 0.05          | 0.00           | 0.00         | 0.00          | 0.00          |
| Coral massive          | СМ     | 13.13         | 17.15         | 8.85           | 11.50        | 18.54         | 9.13          |
| Millepora (fire coral) | CME    | 0.00          | 0.05          | 0.00           | 0.00         | 0.00          | 0.00          |
| Mushroom coral         | CMR    | 0.05          | 0.05          | 0.00           | 0.07         | 0.07          | 0.07          |
| Coral submassive       | CS     | 4.93          | 0.70          | 1.65           | 4.80         | 0.40          | 2.13          |
| TO TAL HARD CO RAL     |        | 28.92         | 28.60         | 20.45          | 18.54        | 20.07         | 19.67         |
|                        |        |               |               |                |              |               |               |
| SOFT CORAL             | SC     | 0.83          | 0.95          | 0.70           | 1.07         | 0.80          | 1.27          |
|                        |        |               |               |                |              |               |               |
| DEAD CORAL/DEAD        |        |               |               |                |              |               |               |
| CORAL WITH ALGAE       | DC/DCA | 10.13         | 8.80          | 14.70          | 9.00         | 3.13          | 4.67          |
| Al                     |        | 4.00          | 40.05         | 07.70          | 0.70         | <b>57 50</b>  | 00.07         |
| Algal assemblage       |        | 4.00          | 48.25<br>0.45 | 27.70<br>13.75 | 2.70         | 57.52<br>0.20 | 39.87         |
| Coralline Algae        |        | 8.38<br>0.83  | 0.45<br>1.30  | 2.60           | 6.97<br>2.77 | 3.53          | 11.00<br>4.07 |
| Halimeda               |        |               |               |                | 2.77         |               |               |
| Macroalgae             |        | 0.13<br>2.53  | 0.10          | 0.05<br>0.00   | 0.07<br>1.57 | 0.00          | 0.00<br>0.00  |
| Turf algae             | TA     | 2.53<br>15.87 | E0 40         |                |              | 64.25         | 0.00<br>54.93 |
| TO TAL ALGAE           |        | 15.67         | 50.10         | 44.10          | 14.08        | 61.25         | 54.95         |
|                        | от     | 0.78          | 0.10          | 0.00           | 0.43         | 0.22          | 0.80          |
| OTHER FAUNA            | 01     | 0.78          | 0.10          | 0.20           | 0.43         | 0.33          | 0.60          |
| Rubble                 | R      | 0.73          | 4.90          | 3.70           | 0.33         | 1.80          | 0.73          |
| Rock                   |        | 36.38         | 4.90<br>5.50  | 3.70<br>1.60   | 60.37        | 9.07          | 0.73          |
| Sand                   | -      | 30.38<br>4.40 | 0.85          | 3.90           | 3.40         | 9.07<br>3.40  | 5.20          |
| Silt                   |        | 4.40          | 0.00          | 3.90           | 3.40         | 0.00          | 9.47          |
| TOTAL ABIOTIC          | 3      | 41.51         | 11.25         | 15.85          | 64.10        | 14.27         | 9.47<br>15.60 |
| IO TAL ABIO IIC        |        | 41.51         | 11.25         | 15.65          | 04.10        | 14.27         | 15.00         |
| SPONGE                 | SP     | 1.33          | 0.10          | 3.95           | 0.50         | 0.07          | 3.07          |
| GONOL                  |        | 1.55          | 0.70          | 5.35           | 0.50         | 0.07          | 5.07          |
| UNIDENTIFIED           | UNID   | 0.73          | 0.10          | 0.25           | 0.37         | 0.07          | 0.00          |

Table 3. Percentage cover of the different benthic lifeform categories in Digisit Punti-an proposed MS using video transect method. (Observer: Lambert Menez).

|                       |      | Inside S | anctuary | Outside Sanctuary |       |  |  |  |
|-----------------------|------|----------|----------|-------------------|-------|--|--|--|
| LIFEFORM              | Code | DGST1    | DGST2    | DGST3             | DGST4 |  |  |  |
| Hard coral            |      | 23.2     | ? 16     | 13.2              | 11.6  |  |  |  |
| Acropora              |      | 3.8      | 3 4.2    | 3.6               | 0.6   |  |  |  |
| Acropora branching    | ACB  | 2.4      | ! 1.4    | 0.8               | }     |  |  |  |
| Acropora tabulate     | ACT  | 1.4      | 2.8      | 2.8               | 0.6   |  |  |  |
| non-Acropora          |      | 19.4     | ! 11.8   | 9.6               | 5 11  |  |  |  |
| Coral branching       | СВ   | 1        | 0.6      | 0.4               | 0.6   |  |  |  |
| Coral encrusting      | CE   | 13.8     | 9.6      | 7.2               | 8.6   |  |  |  |
| Coral foliose         | CF   | 0.6      | ;        | 0.2               |       |  |  |  |
| Coral massive         | СМ   | 0.6      | 5        |                   | 1.6   |  |  |  |
| Coral submassive      | CS   | 3.2      | ? 1.6    | 1.6               | ;     |  |  |  |
| Coral mushroom        | CMR  | 0.2      | 2        | 0.2               | 0.2   |  |  |  |
| Dead coral with algae | DCA  | 11.4     | : 14     | 10.6              | 8.6   |  |  |  |
| Soft Coral            | sc   | 1.8      | 3 4.2    | 4.8               | 15.2  |  |  |  |
| Sponge                | SP   | 9.8      | 8 12     | 13.4              | 9.2   |  |  |  |
| Zoanthids             | zo   | 0.2      | 2 0.6    | 0.2               | 1.2   |  |  |  |
| Other Living          | ΟTL  |          |          | 0.2               |       |  |  |  |
| Algae                 |      | 52       | 2 47.8   | 54.4              | 53.8  |  |  |  |
| Algal assemblage      | AA   | 22.6     | 5 19.8   | 25.4              | 22.4  |  |  |  |
| Coralline alggae      | CA   | 10.2     | . 5.6    | 7                 | 9.2   |  |  |  |
| Halimeda              | НА   | 17.4     | 21.6     | 20.8              | 20.6  |  |  |  |
| Macro algae           | МА   | 1.8      | 8 0.8    | 1.2               | 1.6   |  |  |  |
| Abiotic               |      | 1.6      | i 5.4    | 3.2               | 0.4   |  |  |  |
| Rubble                | R    | 0.4      | ! 1      | 0.2               | 0.2   |  |  |  |
| Sand                  | S    | 1.2      | 2 2      | 2.4               | !     |  |  |  |
| Silt                  | S    |          | 2.4      | 0.6               | 0.2   |  |  |  |

Table 4. Abundance of reef fish species (individuals/500m<sup>2</sup>) observed in in Mapalad-Dibaraybay and Digisit-Punti-an MS (Observer: Melchor Deocadez)

| Este se estes                                  | Baler Fish Sanctuary |        |    |    |                  |          | Mapalad-Dibaraybay Fish Sanctuary |          |          |          |         |    |              |          |   |
|------------------------------------------------|----------------------|--------|----|----|------------------|----------|-----------------------------------|----------|----------|----------|---------|----|--------------|----------|---|
| Fish species                                   |                      |        |    |    | Outside<br>T1 T2 |          | T1                                | Inside   |          | T4 1     |         | Тı | Out<br>T1 T2 |          | 2 |
| Acanthurus blochii                             | 11                   | 12     | ۷  | 11 | 1                | <u>-</u> | 11                                | T2       | Т3       | I        | 4       | 11 | 12           | T:       | 5 |
| Acanthurus lineatus                            |                      |        |    |    | 1                |          | 3                                 |          |          |          |         |    |              |          |   |
| Acanthurus nigricans                           |                      | 6      | 3  |    | 3                | 1        | 1                                 |          |          |          |         |    |              |          |   |
| Acanthurus sp.                                 |                      | 0      | 0  |    | 0                |          |                                   |          | 2        |          |         |    |              |          |   |
| Amblyglyphidodon curacao                       |                      |        |    |    |                  |          |                                   |          | -        |          | 10      | 11 |              |          | 7 |
| Amblyglyphidodon leucogaster                   |                      | 4      | 11 |    | 1                |          | 8                                 |          |          |          | 15      |    |              |          | 2 |
| Amphiprion clarkii                             |                      | -      |    |    |                  |          | -                                 |          |          |          |         |    |              |          | 3 |
| Anampses twistii                               |                      |        |    |    |                  |          |                                   |          |          |          |         | 1  |              |          | 0 |
| Arothron nigropunctatus                        |                      |        |    |    |                  |          |                                   |          |          |          |         |    |              |          | 1 |
| Balistapus undulatus                           |                      | 3      |    |    | 1                |          | 3                                 |          | 1        | 4        | 1       | 1  |              | 3        | 2 |
| Bodianus mesothorax                            |                      | 1      | 3  |    | 2                |          | 2                                 |          | 1        |          | 4       | 2  |              |          | 2 |
| Caesio cuning                                  |                      |        |    |    |                  |          | 100                               |          |          |          |         |    |              |          |   |
| Cantherhines pardalis                          |                      | 1      |    |    |                  |          |                                   |          |          |          |         |    |              |          |   |
| Canthigaster compressa                         |                      |        |    |    |                  |          |                                   |          |          |          | 1       |    |              |          |   |
| Canthigaster solandri                          |                      |        |    |    |                  |          |                                   |          |          |          | 5       |    |              |          |   |
| Centropyge bispinosus                          |                      |        |    |    |                  |          | 1                                 |          | 3        |          |         | 2  |              |          |   |
| Centropyge vroliki                             |                      | 2      | 7  |    |                  | 2        | 7                                 |          | 1        | 2        |         | 4  |              | 12       | 5 |
| Cephalopholis leopardus                        |                      | 1      |    |    |                  |          |                                   |          |          | 1        |         | 1  |              |          |   |
| Cephalopholisminiata                           |                      |        |    |    |                  |          | 1                                 |          |          |          |         |    |              |          |   |
| Cephalopholis urodeta                          |                      |        |    |    |                  |          |                                   |          | 1        | 1        |         |    |              |          |   |
| Cetoscarus bicolor                             |                      | 2      |    |    | 1                | 2        |                                   |          |          |          | 1       |    |              |          |   |
| Chaetodon baronessa                            |                      | 3<br>1 |    |    | 1                | 2        |                                   |          |          |          |         |    |              | 2        |   |
| Chaetodon citrinellus<br>Chaetodon kleinii     |                      | I      |    |    |                  |          |                                   |          |          | 1        |         |    |              | 2        |   |
| Chaetodon mertensii                            |                      |        |    |    |                  |          |                                   |          |          | 1        |         |    |              | 4        |   |
| Chaetodon ornatissimus                         |                      |        | 1  |    |                  |          |                                   |          |          |          |         |    |              | 4        |   |
| Chaetodon rafflesii                            |                      |        | '  |    |                  |          |                                   |          |          | 1        |         |    |              | 1        |   |
| Chaetodon sp.                                  |                      |        | 1  |    |                  |          |                                   |          |          | '        |         |    |              |          |   |
| Chaetodon speculum                             |                      |        |    |    | 1                |          |                                   |          | 2        |          |         |    |              |          |   |
| Chaetodon trifasciatus                         |                      |        | 2  |    | 1                |          | 3                                 |          | 2        | 1        | 3       |    |              |          | 3 |
| Chaetodon vagabundus                           |                      | 2      | 1  |    | 2                |          | 2                                 |          | 3        | 2        | 0       |    |              |          | 0 |
| Cheilinus fasciatus                            |                      |        |    |    |                  |          |                                   |          |          |          | 1       |    |              |          |   |
| Cheilinus trilobatus                           |                      |        |    |    |                  |          |                                   |          | 1        |          |         | 3  |              |          | 1 |
| Cheilodipterus macrodon                        |                      |        |    |    |                  |          |                                   |          |          |          | 7       |    |              |          |   |
| Cheilodipterus quinquelineat                   |                      |        |    |    |                  |          |                                   |          |          |          | 2       |    |              |          |   |
| Chromis atripectoralis                         |                      |        |    |    |                  | 1        |                                   |          |          |          |         |    |              |          |   |
| Chromis retrofasciata                          |                      |        |    |    |                  |          | 8                                 |          |          |          |         |    |              |          | 1 |
| Chromisternatensis                             |                      |        |    |    |                  |          |                                   |          |          |          | 15      |    |              |          |   |
| Chromis weberi                                 |                      |        |    |    |                  |          |                                   | 1        | 1        |          | 10      |    |              |          |   |
| Chromis xanthura                               |                      |        | 3  |    | 3                |          | 4                                 |          |          |          |         |    |              |          |   |
| Chrysiptera rex                                |                      | 1      |    |    | 1                | 1        |                                   |          |          | 30       |         |    |              | 1        |   |
| Chrysiptera rollandi                           |                      |        |    |    |                  |          |                                   |          | 2        |          | 1       |    |              |          | 2 |
| Cirrhilabrus cyanopleura                       |                      |        |    |    |                  |          |                                   | 1        |          |          |         |    |              |          |   |
| Cirrhitichthys falco<br>Ctenochaetus binotatus |                      |        |    |    | 6                | 2        | 4                                 |          | 1        | 1        | F       | 11 | ,            |          | 4 |
| Ctenochaetus striatus                          |                      | 39     | 7  |    | 6<br>5           | 2<br>4   | 1<br>21                           | 16<br>24 |          | 39<br>68 | 5<br>20 |    |              | 25<br>23 | 4 |
| Ctenochaetus strigosus                         |                      | 59     | '  |    | 5                | 4        | 21                                |          | + ·<br>1 | 2        | 20      | 21 |              | 20       | ' |
| Dascyllus reticulatus                          |                      | 1      |    |    | 10               | 3        | 3                                 |          | 1        | 2        | -       | 2  |              |          |   |
| Dascyllus trimaculatus                         |                      | •      |    |    | 10               | 0        | 0                                 |          | •        |          |         |    |              |          | 1 |
| Diploprion bifasciatum                         |                      | 1      |    |    |                  |          |                                   |          | 1        |          |         | 1  |              |          |   |
| Epibulus insidiator                            |                      |        |    |    |                  | 1        |                                   |          |          |          |         | 1  |              |          |   |
| Forcipiger longirostris                        |                      |        | 2  |    |                  |          | 1                                 |          | 1        |          |         | 2  |              |          |   |
| Gomphosus varius                               |                      | 2      | 1  |    | 2                | 1        |                                   |          | 1        | 1        |         | 1  |              |          | 1 |
| Halichoeres hortulanus                         |                      | 2      |    |    | 2                | 1        | 1                                 |          |          | 2        | 1       | 2  |              | 1        |   |
| Halichoeres melanochir                         |                      | 6      | 5  |    | 2                | 2        | 2                                 | 4        | 4        | 1        | 1       | 1  |              |          | 1 |
| Halichoeres melanurus                          |                      | 1      |    |    |                  |          |                                   |          |          |          | 2       |    |              | 4        |   |
| Halichoeres prosopeion                         |                      |        |    |    |                  |          | 1                                 |          |          | 4        |         | 1  |              |          | 2 |
| Hemigymnus fasciatus                           |                      | 1      | 1  |    |                  |          |                                   |          | 1        | 2        |         |    |              |          |   |
| Heniochus acuminatus                           |                      |        |    |    |                  |          |                                   |          |          |          | 2       |    |              |          |   |
| Heniochus monoceros                            |                      | 1      | 1  |    |                  |          |                                   |          |          | 2        |         | 1  |              |          |   |
| Heniochus varius                               |                      |        | 2  |    |                  |          | 2                                 |          |          | 1        | 4       | 1  |              |          |   |
| Hipposcarus longiceps                          |                      |        |    |    |                  |          | 1                                 |          |          |          |         |    |              | 1        |   |
| Labracinus cyclophthalmus                      |                      | 2      |    |    | 3                |          |                                   |          |          |          |         |    |              |          | - |
| Labrichthysunilineatus                         |                      | 2      | 2  |    | 2                |          |                                   |          | 1        |          | 1       | 4  |              |          | 2 |
| Labroides dimidiatus                           |                      | 1      |    |    | 2                | 1        | 1                                 | 2        | 2        | 2        | 1       | 1  |              | 2        | 1 |
| Lutjanus biguttatus                            |                      |        |    |    |                  |          |                                   |          |          |          | 7       |    |              |          | 1 |
| Lutjanus decussatus                            |                      | 1      |    |    |                  |          |                                   |          |          |          |         |    |              |          |   |
| Lutjanus ehrenbergii<br>Lutjanus fulvus        |                      |        |    |    |                  |          |                                   |          |          | 1        |         |    |              |          |   |
|                                                |                      |        |    |    |                  |          |                                   |          |          | 1        |         | 1  |              |          |   |

| Cont'n Appendix table 4                   |              |           |               |           |     |        |         |           |                |               |           |  |
|-------------------------------------------|--------------|-----------|---------------|-----------|-----|--------|---------|-----------|----------------|---------------|-----------|--|
|                                           | Baler F      | ish San   |               |           |     |        | d-Diba  | raybay    | Fish Sanctuary |               |           |  |
| Fish species                              | Inside<br>T1 | T2        | Outside<br>T1 | e<br>T2   | T1  | Inside | ТЗ      | T4        |                | Outside<br>T2 | e<br>T3   |  |
| Macolor niger                             | 11           | 12        | 11            | 12        | 11  | T2     | 13      | 14 2      | 11             | 12            | 13        |  |
| Macropharyngodon negrosensis              |              | 2         |               |           |     |        |         | 2         |                |               |           |  |
| Meiacanthus atrodorsalis                  |              | 2         |               |           |     | 1      |         |           |                |               |           |  |
| Melichthys vidua                          |              |           |               |           |     |        | 1       |           |                |               |           |  |
| Monotaxis grandoculis                     | 1            |           |               |           |     |        | 1       |           |                |               |           |  |
| Myripristis murdjan                       |              | 1         |               |           | 5   |        |         | 11        | 1              |               | 1         |  |
| Naso annulatus                            |              | '         | 2             |           | 5   |        |         |           |                |               | '         |  |
| Naso hexacanthus                          |              |           | 2             |           |     |        | 1       |           |                |               |           |  |
| Naso lituratus                            | 2            |           |               |           |     |        | 13      | 2         |                |               |           |  |
| Neoglyphidodon nigroris                   | 1            | 11        | 1             |           | 29  | 1      | 15      | 7         | 13             | 1             | 22        |  |
| Oxycheilinus unifasciatus                 |              | 1         | 1             |           | 23  | ,      |         | '         | 10             | i             | 1         |  |
| Paracirrhites arcatus                     | 3            | 2         |               | 1         |     |        |         | 2         |                |               | '         |  |
| Parupeneus barberinus                     | 5            | 2         |               | '         | 1   |        |         | 2         |                |               |           |  |
| Parupeneus multifasciatus                 |              | 1         |               |           |     |        |         |           |                |               |           |  |
| Pempheris oualensis                       |              | 1         |               |           |     |        |         | 6         |                |               | 1         |  |
| Plectroglyphidodon lacrymatu              | 55           | 30        | 64            | 36        | 13  | 4      | 7       | 25        | 20             | 2             | 32        |  |
| Plectropomus leopardus                    | 55           | 50        | 04            | 50        | 3   | 4      | 1       | 25        | 20             | 2             | 52        |  |
| Pomacentrus adelus                        |              |           |               |           | 2   |        | 6       |           | 2              |               | 1         |  |
| Pomacentrus alexanderae                   |              |           |               |           | 2   |        | 0       |           | 2              |               | 5         |  |
| Pomacentrus amboinensis                   | 8            | 16        | 13            | 7         | 18  | 14     | 24      | 5         | 5              | 6             | 6         |  |
| Pomacentrus bankanensis                   | 0            | 10        | 13            | '         | 10  | 14     | 24<br>1 | 5         | 5              | U             | 0         |  |
| Pomacentrus lepidogenys                   | 68           | 12        | 53            | 72        |     |        | 29      | 3         |                |               | 3         |  |
| Pomacentrus philippinus                   | 18           | 16        | 43            | 8         | 4   |        | 29      | 2         | 13             | 7             | 4         |  |
| Pomacentrus sp.                           | 10           | 10        | 43            | 0         | 4   | 4      | 5       | 2         | 13             | 36            | 4         |  |
| Pomacentrus stigma                        | 5            | 7         |               |           | 11  | 16     | 5       | '         | 3              | 50            | 1         |  |
| Pomacentrus vajuli                        | 6            | 2         |               | 2         |     | 2      |         |           | 2              | 2             | 2         |  |
| Ptereleotris evides                       | 0            | 2         |               | 25        |     | 6      |         |           | 2              | 2             | 2         |  |
| Pterocaesio tile                          |              |           |               | 25        |     | 0      |         |           | 2              |               | 5         |  |
| Pygoplites diacanthus                     | 6            | 2         |               |           | 1   |        | 3       |           | 1              |               | 0         |  |
| Sargocentron caudimaculatum               | 0            | 2         |               |           | 1   |        | 5       | 2         |                |               |           |  |
| Saurida gracilis                          |              | 2         |               | 1         | '   |        |         | 2         |                |               |           |  |
| Scarus bleekeri                           | 2            |           |               | '         |     |        | 2       | 1         |                |               |           |  |
| Scarus bowersi                            | 2            |           |               |           | 3   | 1      | 2       | 1         |                |               |           |  |
| Scarus niger                              |              |           |               |           | 5   | 1      | 2       | 4         |                |               |           |  |
| Scarus oviceps                            |              |           |               |           | 1   |        | 2       | -         |                |               |           |  |
| Scarus quoyi                              |              | 2         |               |           |     | 3      | 1       |           | 2              |               |           |  |
| Scarus schlegeli                          |              | 2         |               |           |     | 5      | 1       |           | 2              |               |           |  |
| Scarus sordidus                           | 11           | 9         |               | 3         | 5   | 7      | 6       | 3         | 5              | 5             | 4         |  |
| Scarus sp.                                | 4            | 9         |               | 1         | 5   | '      | 0       | 5         | 5              | 5             | 4         |  |
| Scarus sp.1                               | -            |           |               | 1         |     |        |         |           |                |               |           |  |
| Scolopsis bilineatus                      |              |           | 1             | '         |     |        | 1       |           |                | 1             |           |  |
| Scolopsis ciliatus                        |              |           |               |           |     |        |         | 1         |                | '             |           |  |
| Scolopsis lineatus                        |              |           |               |           |     |        | 1       |           |                |               |           |  |
| Siganus argenteus                         |              |           |               |           | 1   |        |         |           |                |               |           |  |
| Siganus vulpinus                          |              | 2         |               |           | 1   |        |         |           |                |               |           |  |
| Stethojulis bandanensis                   |              | 2         | 1             |           |     |        |         |           |                | 1             |           |  |
| Stethojulis strigiventer                  |              |           |               |           |     |        |         |           |                | 1             |           |  |
| Stethojulis trilineata                    |              |           | 2             |           |     |        |         |           |                | 1             |           |  |
| Sufflamen chrysopterus                    | 1            |           | 2             |           |     | 1      | 1       |           |                |               |           |  |
| Thalassoma hardwickii                     |              | 1         | 2             | 3         |     | I      | 1       |           |                | 1             |           |  |
| Thalassoma jansenii                       | 1            | I         | 2             | 3<br>2    |     |        | I       |           |                | 1             |           |  |
| Thalassoma Junare                         |              |           | 3             | 2         |     | 28     | 1       |           | 1              |               |           |  |
| Thalassoma lutescens                      | 1            |           | 3             | 1         |     | 20     | I       |           |                |               |           |  |
| Valenciennea strigata                     |              |           | 3             | 1         |     | 2      |         |           |                |               |           |  |
| 8                                         | 5            |           | 2             | 1         | 1   | 2<br>1 | 1       |           |                | 2             |           |  |
| Zanclus cornutus<br>Zebrasoma flavescens  | э            |           | 2             | 1         |     | Т      | T       | 4         |                | 2             |           |  |
|                                           |              |           |               |           | _   |        |         | 1         | 2              |               |           |  |
| Zebrasoma scopas                          |              | 1         |               | 1         | 3   |        | 11      | 3         | 2              |               | 1         |  |
| Zebrasoma veliferum                       | 000          | 474       | 0.40          | 407       | 000 | 400    | 3       | 000       | 400            | 4 4 4         | A 40      |  |
| Abundance (indiv/500m2)                   | 280          | 174       | 242           | 187       | 282 | 189    | 295     | 206       | 162            | 144           | 142       |  |
| Density (Indiv./m2)                       | 0.6          | 0.3       | 0.5           | 0.4       | 0.6 | 0.4    | 0.6     | 0.4       | 0.3            | 0.3           | 0.3       |  |
| Mean Density (Indiv./m2)<br>No of species | 39           | 0.5<br>37 | 34            | 0.4<br>29 | 42  | 41     | 49      | 0.5<br>44 | 38             | 24            | 0.3<br>36 |  |

| Fish species                                    | Baler Fish Sanctuary<br>Inside Outside |       |       |       | Inside      | wapalad | barayl | bay Hish    | sh Sanctuary<br>Outside |       |         |  |
|-------------------------------------------------|----------------------------------------|-------|-------|-------|-------------|---------|--------|-------------|-------------------------|-------|---------|--|
| Fish species                                    | T1                                     | T2    | T1    | T2    | T1          |         | ТЗ     | T4          | T1                      | T2    | ,<br>T3 |  |
| Acanthurus blochii                              |                                        | 12    | 157.4 | 12    |             | 12      | 10     |             |                         | 12    | 10      |  |
| Acanthurus lineatus                             |                                        |       |       |       | 1134.7      |         |        |             |                         |       |         |  |
| Acanthurusnigricans                             | 288.3                                  | 65.7  | 172.1 | 31.3  | 50.9        |         |        |             |                         |       |         |  |
| Acanthuruspyroferus                             | 20.9                                   |       | 8.0   |       |             | 216.6   |        |             |                         | 157.5 |         |  |
| Acanthurus sp.                                  |                                        |       |       |       |             | 79.4    |        |             |                         |       |         |  |
| Amblyglyphidodon curacao                        |                                        |       |       |       |             |         |        | 138.6       | 183.5                   |       | 116.8   |  |
| Amblyglyphidodon leucogaster                    | 152.6                                  | 423.0 | 65.1  |       | 160.4       |         |        | 382.7       |                         |       | 49.3    |  |
| Amphiprion clarkii                              |                                        |       |       |       |             |         |        |             |                         |       | 35.4    |  |
| Anampses twistii                                |                                        |       |       |       |             |         |        |             | 12.8                    |       |         |  |
| Arothron nigropunctatus                         |                                        |       |       |       |             |         |        |             |                         |       | 5.      |  |
| Balistapus undulatus                            | 98.9                                   |       | 77.9  |       | 103.6       | 38.6    | 72.2   | 38.6        | 21.7                    | 82.0  | 43.4    |  |
| Bodianus mesothorax                             | 32.9                                   | 131.1 | 130.5 |       | 37.7        | 18.8    |        | 70.2        | 65.9                    |       | 51.8    |  |
| Caesio cuning                                   | 447                                    |       |       |       | 16951.0     |         |        |             |                         |       |         |  |
| Cantherhines pardalis                           | 44.7                                   |       |       |       |             |         |        | 2.0         |                         |       |         |  |
| Canthigaster compressa<br>Canthigaster solandri |                                        |       |       |       |             |         |        | 3.0<br>15.2 |                         |       |         |  |
| Centropyge bispinosus                           |                                        |       |       |       | 4.3         | 18.2    |        | 15.2        | 8.6                     |       |         |  |
| Centropyge vroliki                              | 7.1                                    | 38.9  |       | 12.1  | 4.3<br>54.4 | 10.2    | 21.3   |             | 28.1                    | 105.1 | 43.     |  |
| Cephalopholis leopardus                         | 23.7                                   | 50.5  |       | 12.1  | 54.4        | 10.0    | 21.5   |             | 13.6                    | 105.1 | 40.     |  |
| Cephalopholis miniata                           | 20.1                                   |       |       |       | 59.8        |         | 20.7   |             | 10.0                    |       |         |  |
| Cephalopholis urodeta                           |                                        |       |       |       | 00.0        | 74.4    | 132.7  |             |                         |       |         |  |
| Cetoscarus bicolor                              |                                        |       |       |       |             |         |        | 88.4        |                         |       |         |  |
| Chaetodon baronessa                             | 131.1                                  |       | 50.5  | 101.0 |             |         |        |             |                         |       |         |  |
| Chaetodon citrinellus                           | 6.7                                    |       |       |       |             |         |        |             |                         | 44.6  |         |  |
| Chaetodon kleinii                               |                                        |       |       |       |             |         | 30.1   |             |                         |       |         |  |
| Chaetodon mertensii                             |                                        |       |       |       |             |         |        |             |                         | 108.0 |         |  |
| Chaetodon ornatissimus                          |                                        | 94.9  |       |       |             |         |        |             |                         | 30.1  |         |  |
| Chaetodon rafflesii                             |                                        |       |       |       |             |         | 30.1   |             |                         |       |         |  |
| Chaetodon sp.                                   |                                        | 7.1   |       |       |             |         |        |             |                         |       |         |  |
| Chaetodon speculum                              |                                        |       | 94.9  |       |             | 32.1    |        |             |                         |       |         |  |
| Chaetodon trifasciatus                          |                                        | 60.6  | 51.4  |       | 91.0        | 102.8   | 30.3   | 91.0        |                         |       | 133.    |  |
| Chaetodon vagabundus                            | 32.1                                   | 50.5  | 126.6 |       | 101.0       | 240.3   | 113.8  |             |                         |       |         |  |
| Cheilinus fasciatus                             |                                        |       |       |       |             |         |        | 815.1       |                         |       |         |  |
| Cheilinus trilobatus                            |                                        |       |       |       |             | 33.8    |        |             | 59.1                    |       | 19.     |  |
| Cheilodipterus macrodon                         |                                        |       |       |       |             |         |        | 52.6        |                         |       |         |  |
| Cheilodipterus quinquelineat                    |                                        |       |       |       |             |         |        | 8.6         |                         |       |         |  |
| Chromis atripectoralis                          |                                        |       |       | 1.8   |             |         |        |             |                         |       |         |  |
| Chromis retrofasciata                           |                                        |       |       |       | 1.5         |         |        | 105 5       |                         |       | 0.      |  |
| Chromis ternatensis                             |                                        |       |       |       |             | 175.0   |        | 135.5       |                         |       |         |  |
| Chromis weberi<br>Chromis xanthura              |                                        | 49.2  | 181.3 |       | 171.6       | 175.6   |        | 153.1       |                         |       |         |  |
| Chrysiptera rex                                 | 0.3                                    | 49.2  | 0.6   | 0.6   | 171.0       |         | 18.7   |             |                         | 0.6   |         |  |
| Chrysiptera rollandi                            | 0.3                                    |       | 0.0   | 0.0   |             | 2.6     | 10.7   | 0.6         |                         | 0.0   | 0.      |  |
| Cirrhilabrus cyanopleura                        |                                        |       |       |       |             | 75.0    |        | 0.0         |                         |       | 0.      |  |
| Cirrhitichthys falco                            |                                        |       |       |       |             | 16.3    | 5.6    |             |                         |       |         |  |
| Ctenochaetus binotatus                          |                                        |       | 325.2 | 101.1 | 31.5        | 618.3   | 1666.4 | 237.9       | 441.7                   | 806.8 | 126.    |  |
| Ctenochaetus striatus                           | 2318.0                                 | 384.6 | 304.3 | 140.8 |             | 1077.4  | 4609.8 |             | 770.7                   | 828.9 | 318.    |  |
| Ctenochaetus strigosus                          |                                        |       |       |       | 28.3        | 27.6    | 55.2   | 150.6       | 140.7                   |       |         |  |
| Dascyllus reticulatus                           | 2.8                                    |       | 50.9  | 15.3  | 25.2        | 5.1     |        |             | -                       |       |         |  |
| Dascyllus trimaculatus                          | _                                      |       |       |       | _           |         |        |             |                         |       | 8.      |  |
| Diploprion bifasciatum                          | 30.5                                   |       |       |       |             | 30.5    |        |             | 30.5                    |       |         |  |
| Epibulus insidiator                             |                                        |       |       | 113.0 |             |         |        |             | 33.8                    |       |         |  |
| Forcipiger longirostris                         |                                        | 101.0 |       |       | 30.1        | 50.5    |        |             | 60.3                    |       |         |  |
| Gomphosus varius                                | 56.0                                   | 51.1  | 43.5  | 14.7  |             | 39.1    | 23.7   |             | 39.1                    |       | 39.     |  |
| Halichoeres hortulanus                          | 16.1                                   |       | 57.2  | 47.6  | 84.6        |         | 108.2  | 84.6        | 132.2                   | 47.6  |         |  |
| Halichoeres melanochir                          | 134.4                                  | 148.7 | 60.9  | 36.9  | 33.1        | 87.5    | 9.5    | 9.5         | 13.3                    |       | 23.     |  |
| Halichoeres melanurus                           | 9.5                                    |       |       |       |             |         |        | 19.1        |                         | 31.4  |         |  |
| Halichoeres prosopeion                          | 1                                      |       |       |       | 9.5         |         | 66.4   |             | 23.6                    |       | 30.     |  |
| Hemigymnus fasciatus                            | 89.6                                   | 51.1  |       |       |             | 39.1    | 317.5  |             |                         |       |         |  |
| Heniochus acuminatus                            | 1                                      |       |       |       |             |         |        | 187.6       | 93.8                    |       |         |  |
| Heniochus monoceros                             | 195.3                                  | 140.7 |       |       |             |         | 390.6  |             | 140.7                   |       |         |  |
| Heniochus varius                                | 1                                      | 208.3 |       |       | 95.9        |         | 184.1  | 656.6       | 184.1                   |       |         |  |
| Hipposcarus longiceps                           | 1                                      |       |       |       | 271.1       |         |        |             |                         | 150.7 |         |  |
| Labracinus cyclophthalmus                       | 46.3                                   |       | 116.7 |       |             |         |        |             |                         |       |         |  |
| Labrichthysunilineatus                          | 26.7                                   | 12.9  | 34.1  |       |             | 17.0    |        | 9.7         | 82.6                    |       | 19.     |  |
| Labroides dimidiatus                            | 2.1                                    |       | 4.2   | 2.1   | 2.1         | 4.2     | 3.4    | 1.3         | 1.3                     | 2.8   | 2.      |  |
| Lutjanus biguttatus                             | 1                                      |       |       |       |             |         |        | 659.6       |                         |       | 78.     |  |
| Lutjanus decussatus                             | 21.7                                   |       |       |       |             |         |        |             |                         |       |         |  |
| Lutjanus ehrenbergii                            | 1                                      |       |       |       |             |         | 182.2  |             |                         |       |         |  |
| Lutjanus fulvus                                 | I                                      |       |       |       |             |         | 156.7  |             |                         |       |         |  |

Table 5. Reef fish species biomass (g/500m<sup>2</sup>) observed in Mapalad-Dibaraybay and Digisit-Punti-an MS (Observer: Melchor Deocadez)

| Cont'n Appendix table 5                            |        | Delc : E     | ah Orient            |        |         |              | Manula  | Dile         |          | On a st            |        |
|----------------------------------------------------|--------|--------------|----------------------|--------|---------|--------------|---------|--------------|----------|--------------------|--------|
| Figh gradies                                       | Inside | Baler H      | sh Sancti<br>Outside |        |         | Inside       | Mapalad | -Dibaray     | bay Fish | Sanctua<br>Outside |        |
| Fish species                                       | T1     | T2           | T1                   | T2     | T1      | T2           | T3      | T4           | T1       | T2                 | тз     |
| Macolor niger                                      |        | 12           | · ·                  | 12     |         | 12           | 10      | 533.0        |          | 12                 | 10     |
| Macropharyngodon negrosensis                       |        | 134.5        |                      |        |         |              |         | 00010        |          |                    |        |
| Meiacanthus atrodorsalis                           |        |              |                      |        |         | 1.6          |         |              |          |                    |        |
| Melichthys vidua                                   |        |              |                      |        |         |              | 539.1   |              |          |                    |        |
| Monotaxis grandoculis                              | 143.9  |              |                      |        |         |              | 386.9   |              |          |                    |        |
| Myripristis murdjan                                |        | 54.2         |                      |        | 169.0   |              |         | 736.1        | 66.9     |                    | 54.2   |
| Naso annulatus                                     |        |              | 364.0                |        |         |              |         |              |          |                    |        |
| Naso hexacanthus                                   |        |              |                      |        |         |              | 462.5   |              |          |                    |        |
| Naso lituratus                                     | 364.0  |              |                      |        |         |              | 6117.1  | 216.9        |          |                    |        |
| Neoglyphidodon nigroris                            | 19.8   | 401.2        | 38.1                 |        | 711.5   | 24.7         |         | 152.9        | 204.2    | 19.3               | 570.4  |
| Oxycheilinus unifasciatus                          | 04.0   | 42.9         | 19.7                 |        |         |              |         | 505.0        |          |                    | 10.1   |
| Paracirrhites arcatus                              | 34.8   | 33.9         |                      | 14.4   | E4 7    |              |         | 535.6        |          |                    |        |
| Parupeneus barberinus<br>Parupeneus multifasciatus |        | 98.4         |                      |        | 51.7    |              |         |              |          |                    |        |
| Pempheris oualensis                                |        | 96.4<br>57.0 |                      |        |         |              |         | 356.6        |          |                    | 28.7   |
| Pectroglyphidodon lacrymatu                        | 443.5  | 255.4        | 724.1                | 340.6  | 102.1   | 30.4         | 53.2    | 238.8        | 149.5    | 15.2               | 439.5  |
| Plectropomus leopardus                             | 1 10.0 | 200.4        | 1 1                  | 0.0.0  | 1775.7  | 50.4         | 204.6   | 200.0        | 1 10.0   | 10.2               | 100.0  |
| Pomacentrus adelus                                 |        |              |                      |        | 10.0    |              | 26.0    |              | 10.0     |                    | 5.0    |
| Pomacentrus alexanderae                            |        |              |                      |        |         |              |         |              |          |                    | 15.0   |
| Pomacentrus amboinensis                            | 10.6   | 30.1         | 25.4                 | 12.2   | 30.4    | 18.9         | 37.1    | 8.1          | 8.1      | 8.8                | 11.7   |
| Pomacentrus bankanensis                            |        |              |                      |        |         |              | 7.6     |              |          |                    |        |
| Pomacentrus lepidogenys                            | 318.0  | 78.6         | 273.8                | 295.6  |         |              | 116.6   | 12.1         |          |                    | 21.2   |
| Pomacentrus philippinus                            | 26.2   | 37.2         | 89.6                 | 16.0   | 3.4     |              | 1.4     | 0.9          | 14.3     | 6.5                | 4.8    |
| Pomacentrus sp.                                    |        |              |                      |        |         | 16.0         | 25.0    | 5.0          | 90.9     | 193.6              | 30.4   |
| Pomacentrus stigma                                 | 140.0  | 246.7        |                      |        | 221.7   | 285.5        |         |              | 54.2     |                    | 19.3   |
| Pomacentrus vaiuli                                 | 11.1   | 2.9          |                      | 4.1    |         | 1.8          |         |              | 2.9      | 4.1                | 2.9    |
| Ptereleotris evides                                |        |              |                      | 158.4  |         | 38.0         |         |              | 33.0     |                    |        |
| Pterocaesio tile                                   |        |              |                      |        |         |              |         |              |          |                    | 148.9  |
| Pygoplites diacanthus                              | 272.4  | 53.8         |                      |        | 43.1    |              | 178.8   |              | 59.6     |                    |        |
| Sargocentron caudimaculatum                        |        | 278.4        |                      | 2.2    | 66.9    |              |         | 278.4        |          |                    |        |
| Saurida gracilis<br>Scarus bleekeri                | 788.1  |              |                      | 3.2    |         |              | 077.0   | 671.9        |          |                    |        |
| Scarus bowersi                                     | /00.1  |              |                      |        | 1271.1  | 150.7        | 877.0   | 205.1        |          |                    |        |
| Scarus niger                                       |        |              |                      |        | 1271.1  | 150.7        | 965.4   | 598.3        |          |                    |        |
| Scarus oviceps                                     |        |              |                      |        | 205.1   |              | 905.4   | 390.3        |          |                    |        |
| Scarus quoyi                                       |        | 239.0        |                      |        | 200.1   | 645.1        | 88.4    |              | 239.0    |                    |        |
| Scarus schlegeli                                   |        | 200.0        |                      |        |         | 040.1        | 213.2   |              | 200.0    |                    |        |
| Scarus sordidus                                    | 836.3  | 710.7        |                      | 236.9  | 218.0   | 347.9        | 658.3   | 66.3         | 330.9    | 236.9              | 205.7  |
| Scarus sp.                                         | 311.0  |              |                      | 88.4   |         |              |         |              |          |                    |        |
| Scarus sp.1                                        |        |              |                      | 150.7  |         |              |         |              |          |                    |        |
| Scolopsis bilineatus                               |        |              | 91.2                 |        |         |              | 32.8    |              |          | 51.4               |        |
| Scolopsis ciliatus                                 |        |              |                      |        |         |              |         | 30.4         |          |                    |        |
| Scolopsis lineatus                                 |        |              |                      |        |         |              | 4.1     |              |          |                    |        |
| Siganus argenteus                                  |        |              |                      |        | 46.3    |              |         |              |          |                    |        |
| Siganus vulpinus                                   |        | 225.4        |                      |        | 61.5    |              |         |              |          |                    |        |
| Stethojulis bandanensis                            |        |              | 11.1                 |        |         |              |         |              |          | 14.4               |        |
| Stethojulis strigiventer                           |        |              |                      |        |         |              |         |              |          | 14.4               |        |
| Stethojulis trilineata                             |        |              | 30.6                 |        |         |              |         |              |          |                    |        |
| Sufflamen chrysopterus                             |        | 40.0         |                      | 05.0   |         | 77.9         | 77.9    |              |          | <u></u>            |        |
| Thalassoma hardwickii                              |        | 10.6         | 29.4                 | 35.9   |         |              | 39.1    |              |          | 23.7               |        |
| Thalassoma jansenii<br>Thalassoma lunara           |        |              | 64.0                 | 76.9   |         | 204.0        | 0.0     |              |          |                    |        |
| Thalassoma lunare<br>Thalassoma lutescens          |        |              | 64.0                 | 0.0    |         | 391.2        | 9.9     |              | 22.4     |                    |        |
|                                                    |        |              | 85.9                 | 8.9    |         | 64.7         |         |              |          |                    |        |
| Valenciennea strigata<br>Zanclus cornutus          | 461.2  |              | 256.7                | 25.5   | 45.5    | 21.0<br>12.6 | 45.5    |              |          | 71.0               |        |
| Zebrasoma flavescens                               | +01.2  |              | 200.7                | 20.0   | 40.0    | 12.0         | 40.0    | 47.0         | ĺ        | 71.0               |        |
| Zebrasoma scopas                                   |        | 46.2         |                      | 46.2   | 62.8    |              | 514.8   | 47.0<br>76.0 |          |                    | 25.3   |
| Zebrasoma veliferum                                |        | -10.2        |                      | -10.2  | 02.0    |              | 526.9   | 10.0         | 50.7     |                    | 20.0   |
| Biomass (g/ 500m2)                                 | 7969.6 | 5056.8       | 4217.0               | 2131.8 | 25172.3 | 5259.2       | 20461.6 | 9793.8       | 3918.3   | 3055.5             | 2738.8 |
| Biomass (Mt./Km2)                                  | 15.9   | 10.1         | 8.4                  | 4.3    | 50.3    | 10.5         | 40.9    | 19.6         |          | 6.1                | 5.5    |
| Mean Biomass (Mt./Km2)                             |        | 13.0         |                      | 6.3    | 00.0    |              |         | 30.3         |          | 0.1                | 6.5    |

|                          | Baler F | ish San |         |      |      |        | ad-Diba | raybay |      |         |      |
|--------------------------|---------|---------|---------|------|------|--------|---------|--------|------|---------|------|
| Fish species             | Inside  |         | Outside |      |      | Inside |         |        |      | Outside |      |
|                          |         | T2      |         | T2   |      | T2     | Т3      |        | T1   |         | T3   |
| Acanthuridae             | 50      | 11      | 18      | 8    | 31   | 45     | 137     | 35     | 36   | 50      | 12   |
| Apogonidae               |         |         |         |      |      |        |         | 9      |      |         |      |
| Balistidae               | 3       |         | 1       |      | 3    | 2      | 6       | 1      | 1    | 3       | 2    |
| Blenniidae               |         |         |         |      |      | 1      |         |        |      |         |      |
| Caesionidae              |         |         |         |      | 100  |        |         |        |      |         | 5    |
| Chaetodontidae           | 7       | 10      | 5       | 2    | 8    | 8      | 8       | 9      | 5    | 7       | 3    |
| Cirrhitidae              | 3       | 2       |         | 1    |      | 1      | 1       | 2      |      |         |      |
| Gobiidae                 |         |         |         |      |      | 2      |         |        |      |         |      |
| Holocentridae            |         | 3       |         |      | 6    |        |         | 13     | 1    |         | 1    |
| LabBodianinae            | 1       | 3       | 2       |      | 2    | 1      |         | 4      | 2    |         | 2    |
| LabCheilininae           |         | 1       | 1       | 1    |      | 12     |         | 1      | 4    |         | 2    |
| LabCorinae               | 12      | 10      | 17      | 10   | 4    | 37     | 12      | 4      | 7    | 8       | 4    |
| LabLabrichthyinae        | 3       | 2       | 4       | 1    | 1    | 3      | 2       | 2      | 5    | 2       | 3    |
| Lethrinidae              | 1       |         |         |      |      |        | 1       |        |      |         |      |
| Lutjanidae               | 1       |         |         |      |      |        | 2       | 9      |      |         | 1    |
| Microdesmidae            |         |         |         | 25   |      | 6      |         |        | 2    |         |      |
| Monacanthidae            | 1       |         |         |      |      |        |         |        |      |         |      |
| Mullidae                 |         | 1       |         |      | 1    |        |         |        |      |         |      |
| Nemipteridae             |         |         | 1       |      |      |        | 2       | 1      |      | 1       |      |
| Pempheridae              |         | 1       |         |      |      |        |         | 6      |      |         | 1    |
| Pomacanthidae            | 8       | 9       |         | 2    | 9    | 4      | 5       |        | 7    | 12      | 5    |
| Pomacentridae            | 167     | 108     | 189     | 130  | 100  | 55     | 103     | 94     | 83   | 55      | 96   |
| Pseudochromidae          | 2       |         | 3       |      |      |        |         |        |      |         |      |
| SEpinephelinae           | 1       |         |         |      | 4    | 1      | 3       |        | 1    |         |      |
| SGrammistinae            | 1       |         |         |      |      | 1      |         |        | 1    |         |      |
| Scaridae                 | 17      | 11      |         | 5    | 10   | 11     | 12      | 10     | 7    | 6       | 4    |
| Siganidae                |         | 2       |         |      | 2    |        |         |        |      |         |      |
| Synodontidae             |         |         |         | 1    |      |        |         |        |      |         |      |
| Tetraodontidae           |         |         |         |      |      |        |         | 6      |      |         | 1    |
| Zanclidae                | 5       |         | 2       | 1    | 1    | 1      | 1       |        |      | 2       |      |
| Abundance (indiv/500m2)  | 283     | 174     | 243     | 187  | 282  | 191    | 295     | 206    | 162  | 146     | 142  |
| Density (Indiv./m2)      | 0.57    | 0.35    | 0.49    | 0.37 | 0.56 | 0.38   | 0.59    | 0.41   | 0.32 | 0.29    | 0.28 |
| Mean Density (Indiv./m2) |         | 0.46    |         | 0.43 |      |        |         | 0.49   |      |         | 0.3  |

Table 6. Abundance of reef fishes families (individuals/500m<sup>2</sup>) observed in Mapalad-Dibaraybay and Digisit-Punti-an MS (Observer: Melchor Deocadez) Table 7. Reef fish family biomass (g/500m<sup>2</sup>) observed in Mapalad-Dibaraybay and Digisit-Punti-an MS (Observer: Melchor Deocadez)

|                        | Baler Fish Sanctuary |        |         |        |         |        | Mapalad | -Dibaray | bay Fish | Sanctua | ry     |
|------------------------|----------------------|--------|---------|--------|---------|--------|---------|----------|----------|---------|--------|
| Fish species           | Inside               |        | Outside |        |         | Inside |         |          |          | Outside | 9      |
|                        | T1                   | T2     | T1      | T2     | T1      | T2     | Т3      | T4       | T1       | T2      | Т3     |
| Acanthuridae           | 2991.2               | 496.5  | 1331.1  | 319.3  | 1851.6  | 2019.3 | 13952.9 | 1743.2   | 1403.8   | 1793.2  | 470.2  |
| Apogonidae             |                      |        |         |        |         |        |         | 61.2     |          |         |        |
| Balistidae             | 98.9                 |        | 77.9    |        | 103.6   | 116.5  | 689.3   | 38.6     | 21.7     | 82.0    | 43.4   |
| Blenniidae             |                      |        |         |        |         | 1.6    |         |          |          |         |        |
| Caesionidae            |                      |        |         |        | 16951.0 |        |         |          |          |         | 148.9  |
| Chaetodontidae         | 365.3                | 663.1  | 323.4   | 101.0  | 318.0   | 425.6  | 779.2   | 935.2    | 478.9    | 182.7   | 133.1  |
| Cirrhitidae            | 34.8                 | 33.9   |         | 14.4   |         | 16.3   | 5.6     | 535.6    |          |         |        |
| Gobiidae               |                      |        |         |        |         | 21.0   |         |          |          |         |        |
| Holocentridae          |                      | 332.6  |         |        | 235.9   |        |         | 1014.5   | 66.9     |         | 54.2   |
| LabBodianinae          | 32.9                 | 131.1  | 130.5   |        | 37.7    | 18.8   |         | 70.2     | 65.9     |         | 51.8   |
| LabCheilininae         |                      | 42.9   | 19.7    | 113.0  |         | 108.9  |         | 815.1    | 92.9     |         | 29.8   |
| LabCorinae             | 305.7                | 396.1  | 382.5   | 220.9  | 127.2   | 621.4  | 574.2   | 113.2    | 243.4    | 131.6   | 92.8   |
| LabLabrichthyinae      | 28.8                 | 12.9   | 38.3    | 2.1    | 2.1     | 21.2   | 3.4     | 11.0     | 83.9     | 2.8     | 21.4   |
| Lethrinidae            | 143.9                |        |         |        |         |        | 386.9   |          |          |         |        |
| Lutjanidae             | 21.7                 |        |         |        |         |        | 338.8   | 1192.6   |          |         | 78.3   |
| Microdesmidae          |                      |        |         | 158.4  |         | 38.0   |         |          | 33.0     |         |        |
| Monacanthidae          | 44.7                 |        |         |        |         |        |         |          |          |         |        |
| Mullidae               |                      | 98.4   |         |        | 51.7    |        |         |          |          |         |        |
| Nemipteridae           |                      |        | 91.2    |        |         |        | 36.9    | 30.4     |          | 51.4    |        |
| Pempheridae            |                      | 57.0   |         |        |         |        |         | 356.6    |          |         | 28.7   |
| Pomacanthidae          | 279.6                | 92.7   |         | 12.1   | 101.8   | 28.8   | 200.1   |          | 96.3     | 105.1   | 43.8   |
| Pomacentridae          | 1124.9               | 1524.4 | 1449.0  | 686.1  | 1437.8  | 560.5  | 285.6   | 1228.3   | 717.5    | 248.1   | 1330.9 |
| Pseudochromidae        | 46.3                 |        | 116.7   |        |         |        |         |          |          |         |        |
| SEpinephelinae         | 23.7                 |        |         |        | 1835.5  | 74.4   | 361.0   |          | 13.6     |         |        |
| SGrammistinae          | 30.5                 |        |         |        |         | 30.5   |         |          | 30.5     |         |        |
| Scaridae               | 1935.5               | 949.7  |         | 475.9  | 1965.2  | 1143.7 | 2802.2  | 1629.9   | 569.9    | 387.5   | 205.7  |
| Siganidae              |                      | 225.4  |         |        | 107.7   |        |         |          |          |         |        |
| Synodontidae           |                      |        |         | 3.2    |         |        |         |          |          |         |        |
| Tetraodontidae         |                      |        |         |        |         |        |         | 18.3     |          |         | 5.7    |
| Zanclidae              | 461.2                |        | 256.7   | 25.5   | 45.5    | 12.6   | 45.5    |          |          | 71.0    |        |
| Biomass (g/500m2)      | 7969.6               | 5056.8 | 4217.0  | 2131.8 | 25172.3 | 5259.2 | 20461.6 | 9793.8   | 3918.3   | 3055.5  | 2738.8 |
| Biomass (Mt./Km2)      | 15.9                 | 10.1   | 8.4     | 4.3    | 50.3    | 10.5   | 40.9    | 19.6     | 7.8      | 6.1     | 5.5    |
| Mean Biomass (Mt./Km2) |                      | 13.0   |         | 6.3    |         |        |         | 30.3     |          |         | 6.5    |

|                          |        | Baler Fi | sh Sanct | uary   | Mapalad-Dibaraybay Fish Sanctuary |        |         |        | ry     |         |        |
|--------------------------|--------|----------|----------|--------|-----------------------------------|--------|---------|--------|--------|---------|--------|
| Fish species             | Inside |          | Outside  | ;      |                                   | Inside |         |        |        | Outside | ;      |
|                          | T1     | T2       | T1       | T2     | T1                                | T2     | Т3      | T4     | T1     | T2      | Т3     |
| Abundance                |        |          |          |        |                                   |        |         |        |        |         |        |
| Target species           | 75     | 30       | 20       | 11     | 155                               | 58     | 151     | 66     | 47     | 60      | 25     |
| Coral indicator          | 14     | 11       | 9        | 3      | 9                                 | 10     | 9       | 10     | 9      | 9       | 5      |
| Major families           | 194    | 133      | 214      | 173    | 118                               | 123    | 135     | 130    | 106    | 77      | 112    |
| Abundance (indiv/500m2)  | 283    | 174      | 243      | 187    | 282                               | 191    | 295     | 206    | 162    | 146     | 142    |
| Density (Indiv./m2)      | 0.566  | 0.348    | 0.486    | 0.374  | 0.564                             | 0.382  | 0.59    | 0.412  | 0.324  | 0.292   | 0.284  |
| Mean Density (Indiv./m2) |        | 0.5      |          | 0.4    |                                   |        |         | 0.5    |        |         | 0.3    |
| Biomass                  |        |          |          |        |                                   |        |         |        |        |         |        |
| Target species           | 5242.2 | 2161.4   | 1500.3   | 513.3  | 23082.5                           | 3269.5 | 17738.7 | 6341.3 | 2130.3 | 2314.1  | 995.0  |
| Coral indicator          | 853.2  | 668.9    | 614.2    | 126.5  | 363.5                             | 455.3  | 824.7   | 944.8  | 561.5  | 253.7   | 152.5  |
| Major families           | 1874.2 | 2226.5   | 2102.5   | 1492.0 | 1726.3                            | 1534.5 | 1898.2  | 2507.7 | 1226.4 | 487.7   | 1591.3 |
| Biomass (g/500m2)        | 7969.6 | 5056.8   | 4217.0   | 2131.8 | 25172.3                           | 5259.2 | 20461.6 | 9793.8 | 3918.3 | 3055.5  | 2738.8 |
| Biomass (Mt./Km2)        | 15.9   | 10.1     | 8.4      | 4.3    | 50.3                              | 10.5   | 40.9    | 19.6   | 7.8    | 6.1     | 5.5    |
| Mean Biomass (Mt./Km2)   |        | 13.0     |          | 6.3    |                                   |        |         | 30.3   |        |         | 6.5    |

Table 8. Reef fish indicatorabundance and biomass observed in Mapalad-Dibaraybay and Digisit-Punti-an MS (Observer: Melchor Deocadez)

| Baler, Aurora.                 | nes of reef fish families   | translated by the participants from Digisit,                      |  |  |  |  |  |
|--------------------------------|-----------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| FAMILY NAME                    | ENGLISH NAME                | LOCAL NAME                                                        |  |  |  |  |  |
| Holocentridae                  | Soldierfish<br>Squirrelfish | Siga, Aray-aray, pulahan                                          |  |  |  |  |  |
| Aulostomidae /<br>Fistularidae | Trumpetfish /<br>Flutemouth | Torotot                                                           |  |  |  |  |  |
| Scorpaenidae                   | Stonefish/Lionfish          | Lupo, ampo                                                        |  |  |  |  |  |
| Serranidae/<br>Epinephelinae   | Grouper                     | Lapu, Kigting (E. tauvina)<br>Sibungin (P.leavis)                 |  |  |  |  |  |
| Anthiinae<br>(Serranidae)      | Fairy basslets              | Pulata (malalim)                                                  |  |  |  |  |  |
| Apogonidae                     | Cardinalfish                | Samong                                                            |  |  |  |  |  |
| Carangidae                     | Jacks                       | Talakitok, malapundo (C. ignobilis, salmon (E.binilatus)          |  |  |  |  |  |
| Lutjanidae                     | Snapper                     | Guret, dayangdang,<br>Maya-maya (Lutjanus spp.                    |  |  |  |  |  |
| Caesionidae                    | Fusilier                    | Solid (Pterocaesio spp.), Dalagangbukio<br>(Caesio cuning)        |  |  |  |  |  |
| Haemulidae                     | Sweetlips                   | Alatan, labian                                                    |  |  |  |  |  |
| Nemipteridae                   | Coral bream                 | Tungog, saray                                                     |  |  |  |  |  |
| Lethrinidae                    | Emperor                     | Katambak, bukawin                                                 |  |  |  |  |  |
| Mullidae                       | Goatfish                    | Salmonete                                                         |  |  |  |  |  |
| Belonidae                      | Needlefish                  | Du-al                                                             |  |  |  |  |  |
| Epphipidae                     | Batfish                     | Bayang                                                            |  |  |  |  |  |
| Chaetodontidae                 | Butterflyfish               | Alibangbang                                                       |  |  |  |  |  |
| Zanclidae                      | Morish idol                 | Debdiban                                                          |  |  |  |  |  |
| Pomacanthidae                  | Angelfish                   | Kubalan                                                           |  |  |  |  |  |
| Pomacentridae                  | Damselfish                  | Palata, kiskisan (abudefduf spp.)                                 |  |  |  |  |  |
| Labridae                       | Wrasse                      | Mameng, Liyo-liyo (Labroides spp.)                                |  |  |  |  |  |
| Scaridae                       | Parrotfish                  | Mol-mol, mabuntok (Bolbometapon)                                  |  |  |  |  |  |
| Sphyraenidae                   | Barracuda                   | Tamutsong (small), barakuda (big)                                 |  |  |  |  |  |
| Pinguipedidae                  | Sandperch                   | Basakay                                                           |  |  |  |  |  |
| Mugilidae                      | Mullet                      | Anggapang; bulahi (small); banal (big)                            |  |  |  |  |  |
| Acanthuridae                   | Surgeonfish                 | Maragta (Ctenochaetus) Labahita (Acanthurus), Surahan (Naso)      |  |  |  |  |  |
| Siganidae                      | Rabbitfish                  | Medyad (S. guttatus), Mataway (S. spinus), Baliwis (S. argenteus) |  |  |  |  |  |
| Balistidae                     | Triggerfish                 | Pakoy, Paget                                                      |  |  |  |  |  |
| Ostracidae                     | Cowfish / Boxfish           | Tabakan                                                           |  |  |  |  |  |
| Monacanthidae                  | Filefish/leatherjacket      | Pakoy                                                             |  |  |  |  |  |
| Synodontidae                   | Lizard fish                 | Dalag                                                             |  |  |  |  |  |
| Tetraodontidae                 | Pufferfish                  | Botete, boriring                                                  |  |  |  |  |  |
|                                |                             | U                                                                 |  |  |  |  |  |

Table 9. Local names of reef fish families translated by the participants from Digisit.

| Distasidas  | Cattiah      | Datuma iita |
|-------------|--------------|-------------|
| FAMILY NAME | ENGLISH NAME | LOCAL NAME  |

PlotosidaeCatfishPatuna, iitoTable 10. Detailed Schedule of training and survey Activities

| Date/Time       | Topic/Nature of Activity                                                                                                                                                                                                                                                                                    | Responsible<br>Person/Group    | Resource<br>Requirements                                                                                                                                                                                                                                                                                                                 |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| May 15,<br>2006 | Travel to Baler                                                                                                                                                                                                                                                                                             | PMA, 2 MPA M&E STTAS           | Preparation of:<br>- dive gears<br>- compressor<br>- SCUBA tanks<br>- Fish dummies and<br>visual aids<br>- LCD/laptop<br>- craft paper, white<br>board and markers<br>- photocopying of<br>reading materials and<br>powerpoint<br>presentations; other<br>reference materials<br>[C. Nav, coral and<br>fish books]<br>- Blank data forms |  |  |
| Day 1 – May     | y 16, 2006 (Tuesday)- Baler                                                                                                                                                                                                                                                                                 |                                |                                                                                                                                                                                                                                                                                                                                          |  |  |
| A.M.            | Opening Program<br>Overall situation of MPAs in<br>Aurora<br>Lecture:<br>• MPA strengthening<br>and sustainable<br>management<br>• M&E on MPA<br>strengthening and<br>sustainable<br>management<br>• Fish visual census and<br>coral reef fish<br>communities M&E<br>analyses and reef<br>health conditions | Ped/ ILCRMC<br>PMA<br>LM<br>MD | <ul> <li>Hand-outs</li> <li>LCD/laptop</li> </ul> Food and accommodation arrangements for all participants.                                                                                                                                                                                                                              |  |  |
| P.M.            | M&E Methods briefing and<br>group assignments<br>Workshop group<br>standardization and<br>observations<br>• Travel to Dinalungan<br>(3pm)                                                                                                                                                                   | РМА, LM, MD<br>РМА             | <ul> <li>Hand-<br/>outs</li> <li>Field<br/>guide<br/>books</li> <li>Fish<br/>dummi<br/>es</li> <li>Papers<br/>and<br/>pens</li> <li>Data</li> </ul>                                                                                                                                                                                      |  |  |

Cont'n Appendix table 10

| Day 2 – Ma        | y 17, 2006 (Follow-up M&E in D                                                                                                        | inalungan) Wednesday         |                                                                                                                                                                                          |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А.М.<br>Р.М.      | Field training of Dinalungan<br>M&E team and M&E of<br>Mapalad Reef Area<br>Gauge standards and<br>observations of the MS<br>activity | LM & MD<br>PMA               | <ul> <li>Snorkelling<br/>sets</li> <li>SCUBA gears<br/>and tanks</li> <li>UW slates</li> <li>UW video<br/>camera</li> <li>Transect lines</li> <li>Fish dummies</li> <li>Boats</li> </ul> |
| Evening           | Data transcription (Mayor's place)                                                                                                    | PMA, STTAs                   | Computers     Generator in     staff house/     training venue                                                                                                                           |
| Day 4 – Ma        | y 18, 2006 (Follow-up M&E in D                                                                                                        | inalungan) - Thursday        | ·                                                                                                                                                                                        |
| A.M.<br>P.M.      | Continuation of field activity<br>• Review and finalize<br>the standardized<br>M&E protocols and<br>next steps                        | Same as above<br>Ped Orencio | Same as above<br>Draft M&E and<br>performance<br>monitoring protocol<br>for MPA in EcoGov<br>areas should be                                                                             |
|                   | Travel Back to Baler                                                                                                                  |                              | presented.                                                                                                                                                                               |
| Day 5 – Ma        | rch 19, 2006 (Field practice in E                                                                                                     | aler MPA) Friday             |                                                                                                                                                                                          |
| A.M.              | Actual field practice<br>and application for<br>participants in Zabali<br>MPA                                                         | Same as above                | <ul> <li>Snorkelling<br/>sets</li> <li>Field guide<br/>books</li> </ul>                                                                                                                  |
| P.M.<br>(evening) | <ul> <li>Data transcription</li> <li>Feedbacking and<br/>discussions</li> <li>Next steps:</li> <li>M&amp; E program for</li> </ul>    | Ped                          | <ul> <li>Fish dummies</li> <li>Transect lines</li> <li>Papers and pens</li> <li>Data forms</li> </ul>                                                                                    |
|                   | - M&E program for<br>community group<br>- M&E protocols for LSP<br>group                                                              | РМА                          | <ul> <li>SCUBA gears<br/>and tanks</li> <li>UW slates</li> <li>UW video<br/>camera</li> <li>Boats</li> </ul>                                                                             |
| Day 6 – Ma        | rch 20, 2006 -Saturday                                                                                                                | 1                            |                                                                                                                                                                                          |
| A.M./P.M.         | Travel back to Manila                                                                                                                 |                              |                                                                                                                                                                                          |

| Table 11. | Budget for the | Training workshop. |
|-----------|----------------|--------------------|
|-----------|----------------|--------------------|

| ITEMS                  | ILCRMC/<br>ASCOT<br>Cnterpart | Dinalungan<br>Cntrpart | Dipaculao<br>Cntrpart | Baler<br>Cntrpart | San Luis<br>Cntrpart | EcoGov      |
|------------------------|-------------------------------|------------------------|-----------------------|-------------------|----------------------|-------------|
| Meals of participants: |                               |                        |                       |                   |                      |             |
| Accommodation of       |                               |                        |                       |                   |                      |             |
| participants           |                               |                        |                       |                   |                      | P25200.00   |
| Venue Rental           |                               |                        |                       |                   |                      |             |
| Baler                  |                               | Municipal              |                       |                   |                      | P2000.00    |
| Dinalungan             |                               | hall                   |                       |                   |                      | (AMCO)      |
| Sound System and       |                               |                        |                       |                   |                      |             |
| other facilities       |                               |                        |                       |                   |                      |             |
| Boat Rental &          |                               |                        |                       |                   |                      |             |
| Gasoline               |                               | P2000.00               |                       |                   |                      |             |
| Dinalungan<br>Baler    |                               |                        |                       | P1000.00          |                      |             |
| Diving Gear rental     |                               |                        |                       |                   |                      | P12,000.00* |
| (P1000 x 4 days x      |                               |                        |                       |                   |                      | ,,          |
| 3sets)                 |                               |                        |                       |                   |                      |             |
| Skin Diving Gear       |                               |                        |                       |                   |                      |             |
| Rentals                |                               |                        |                       |                   |                      |             |
| Tanks – P150.00 x 10   | P6000.00                      |                        |                       |                   |                      | P2400.00*   |
| tanks x 4 days         |                               |                        |                       |                   |                      |             |
| Compressor rental      |                               |                        |                       |                   |                      |             |
| Field supplies         | 15 slates                     |                        |                       |                   |                      | P3,000.00*  |
| (underwater slates,    | 3 pairs                       |                        |                       |                   |                      | ,           |
| fish dummies,          | masks &                       |                        |                       |                   |                      |             |
| transect line, manila  | snorkels                      |                        |                       |                   |                      |             |
| papers, pentel pens    | Transect                      |                        |                       |                   |                      |             |
| paper 3 perror perro   | line                          |                        |                       |                   |                      |             |
| Supplies and           |                               |                        |                       |                   |                      |             |
| photocopying           |                               |                        |                       |                   |                      | P1730.00    |
| (training kits, hand-  |                               |                        |                       |                   |                      |             |
| outs, data forms       |                               |                        |                       |                   |                      |             |
| Gasoline (Boat and     |                               |                        |                       |                   |                      | P2124.00    |
| Generators)            |                               |                        |                       |                   |                      | 12124.00    |
| Van Rental             |                               |                        |                       |                   |                      | P6000.00    |
| Local Transport of     |                               |                        |                       |                   |                      | ,           |
| participants to and    |                               | P1440.00               | P1200.00              | P240.00           | P720.00              |             |
| from the venue         |                               | 1 1440.00              | 1 1200.00             | 1240.00           | 1120.00              |             |
| Films and Film         |                               |                        |                       |                   |                      | P500.00     |
| Processing             |                               |                        |                       |                   |                      | F300.00     |
| Batteries (digital     |                               |                        |                       |                   |                      |             |
| camera, flashlights)   |                               |                        |                       |                   |                      |             |
| vannera, nasingilisj   |                               |                        |                       |                   |                      |             |
| TOTAL                  | P6000.00                      | P3440.00               | P1200.00              | P1240.00          | P720.00              | P54954.00   |

#### Table 12. Materials used in the training workshop

## A. TRAINING

- Handouts
- Reference materials
- LCD and laptop
- Papers and pens
- Fish dummies
- Field guide books

## **B.** BENCHMARKING AND **M&E**

- SCUBA/snorkel equipment
- SCUBA tanks
- Boat
- Underwater slates
- GPS
- Manta board and rope
- Transect lines/ropes
- Field guide books
- Data forms

#### References:

- Aliño et al. 2001. Challenges and opportunities in MPA Management in the Philippines (9<sup>th</sup> ICRS)
- Aliño 2002. Lecture series (Iceland)
- Arceo et al. 2001. Orientation on MPAs
- Uychiaoco et al. 2001. Coral reef monitoring for management
- Philippine Marine Sanctuary Strategy
   Survey Form and Report Card
- White, et al. 2006. Creating and Managing MPAs in the Philippines

# The Philippine Environmental Governance 2 Project (EcoGov 2) Unit 2401, Prestige Tower F. Ortigas Jr. Road (formerly Emerald Avenue)