

Australia Indonesia Partnership Kemitraan Australia Indonesia


ROAD SECTOR DEVELOPMENT PROGRAMME PACKAGE 3 PAVEMENT DESIGN SUPPLEMENTS TRAINING MATERIALS

INDONESIA INFRASTRUCTURE INITIATIVE

Australia Indonesia Partnership

ROAD SECTOR DEVELOPMENT PROGRAMME PACKAGE 3

PAVEMENT DESIGN SUPPLEMENTS

TRAINING MATERIALS

INDONESIA INFRASTRUCTURE INITIATIVE

May 2011

INDONESIA INFRASTRUCTURE INITIATIVE

This document has been published by the Indonesia Infrastructure Initiative (IndII), an Australian Government funded project designed to promote economic growth in Indonesia by enhancing the relevance, quality and quantum of infrastructure investment.

The views expressed in this report do not necessarily reflect the views of the Australia Indonesia Partnership or the Australian Government. Please direct any comments or questions to the IndII Director, tel. +62 (21) 230-6063, fax +62 (21) 3190-2994. Website: www.indii.co.id.

ACKNOWLEDGEMENTS

This report has been prepared by Edward James on behalf of Cardno Emerging Markets in association with the Australian Road Research Board who were engaged under the Indonesia Infrastructure Initiative (IndII), funded by AusAID, as part of the Directorate General of Highways (DGH) Programme Development Activity.

The products of this Activity draw from numerous sources, particularly the following guidelines and technical papers:

Pavement Design Guide, AASHTO, 1993

Austroads Pavement Design "A Guide to the Structural Design of Road Pavements" 2008

Overseas Road Note 31, Transport Research Laboratory (TRL), UK, 1993

LR 1132, Transport Research Laboratory, 1986

TRL611, Transport Research Laboratory, 1986

The debt owed to the authors of these documents must be acknowledged.

Any errors of fact or interpretation of previous studies under the Indll Road Sector Development Programme are solely those of the author. Any errors of fact or interpretation of previous studies under the Indll Road Sector Development Programme are solely those of the author.

Ed Vowles, Team Leader Jakarta, May 2011

Document Co	ontrol: Ind	II RSDP3 – Activity 2	01 Deliverable 6C	Training Materials	
Version	Date	Author	Initials	Reviewer	Initials
HIS edit corrections	August 2011	Edward James	53)	Ed Vowles	V Vale

© Indll 2011

All original intellectual property contained within this document is the property of the Indonesia Infrastructure Initiative (IndII). It can be used freely without attribution by consultants and IndII partners in preparing IndII documents, reports designs and plans; it can also be used freely by other agencies or organisations, provided attribution is given.

Every attempt has been made to ensure that referenced documents within this publication have been correctly attributed. However, IndII would value being advised of any corrections required, or advice concerning source documents and/ or updated data.

TABLE OF CONTENTS

ABBREVIATIONSI
EXECUTIVE SUMMARYII
ANNEXE 1: ACTIVITY 201 ROAD DESIGN STANDARDS
ANNEXE 2: FIRST PUSJATAN PRESENTATION26
ANNEXE 3: SECOND PUSJATAN PRESENTATION
ANNEXE 4: PAVEMENT DESIGN SUPPLEMENT: PART I50
ANNEXE 5: PAVEMENT DESIGN SUPPLEMENT: PART II57
ANNEXE 6: SELECTION OF REHABILITATION TREATMENTS
ANNEXE 7: PAVEMENT DESIGN SUPPLEMENT: PART I – NEW PAVEMENTS - BAHASA INDONESIA – FIRST DRAFT85
ANNEXE 8: PAVEMENT DESIGN SUPPLEMENT: PART II – REHABILITATION AND RECYCLING OF FLEXIBLE PAVEMENTS - BAHASA INDONESIA – FIRS DRAFT

ABBREVIATIONS

AASHTO	Association of American State Highway and Transportation Officials
AC	Asphaltic concrete
AC BC	Asphaltic concrete binder course
AC WC	Asphaltic concrete wearing course
AMP	Asphalt mixing plant
Austroads	Association of Australian and New Zealand road transport and traffic
/ lustrouus	authorities
BB	Benkelman Beam
CBR	Californian bearing ratio
CESA	Cumulative equivalent standard axles
CIRCLY	Australian mechanistic design software program used by Austroads 2004
СТВ	Cement treated base
DCP	Dynamic cone penetrometer
DG	Director General
DGH	Directorate General of Highways (Bina Marga)
DGH 2002	DGH Flexible Pavement Design Guide
DGH 2003	DGH Rigid Pavement Design Guide
EA	Executing Agency
ESA4	Equivalent Standard Axle – 4th power
ESAasphalt	Equivalent Standard Axle for asphalt (5th power)
FWD	Falling weight deflectometer
FY	Fiscal year
Gol	Government of Indonesia
Hr	Hour
Indll	Indonesia Infrastructure Initiative
IRI	International Roughness Index
IRMS	Indonesian Road Management System
К	Constant
Km	Kilometer
LMC	Lean mix concrete
MDD	Maximum dry density
OMC	Optimum moisture content
ORN	Overseas Road Note
PI	Plasticity Index
PPK	Pejabat Pembuat Komitment (Sub Project Manager)
RF	Reliability factor
SG2	Subgrade with CBR 2 percent
TMasphalt	Traffic multiplier for design of asphalt layers
	Transport Road Laboratory (UK)
VDF Vir	Vehicle damage factor
Yr	Year
με	Microstrain

EXECUTIVE SUMMARY

Training materials prepared for workshops conducted throughout the Activity delivery period are provided. The audience for workshops that have been conducted to date has been limited to Indonesian Road Research Institute (Pusjatan) and Technical Directorate of Directorate General of Highways (DGH-Bintek) staff. A final workshop is planned to present the Design Supplements and Activity #201 findings to a wider audience. Materials for the upcoming workshop are under preparation and have not been included in this document set.

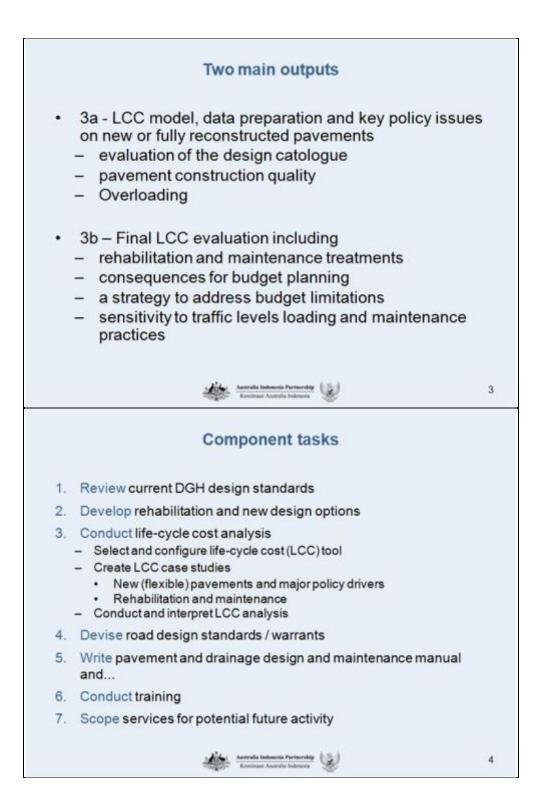
Table 1.1 summarises the main workshop activities, papers presented and authors.

Activity	Venue	Title	Presenter(s)	Date
1	Bintek, Jakarta	Activity 201 Road Design Standards	Nigel Rockliffe, Ted James	22 Nov, 2011
2	Pusjatan, Bandung	First Pusjatan Presentation: Pavement Design Module	Edward James	14 Dec, 2010
3	Pusjatan, Bandung	Second Pusjatan Presentation: Pavement Design Module	Edward James	18 Jan, 2011
4	Bintek, Jakarta	Pavement Design Supplement: Part I: New Pavements	Edward James	8 Feb, 2011
5	Bintek, Jakarta	Pavement Design Supplement Part II: Rehabilitation and Recycling	Geoff Jameson	21 May, 2011
6	Bintek, Jakarta	Rehabilitation Treatment Selection, Warrants and Triggers	Edward James	20 May, 2011

Table 1.1: Indll RSDP3, Activity 201, Training Workshops

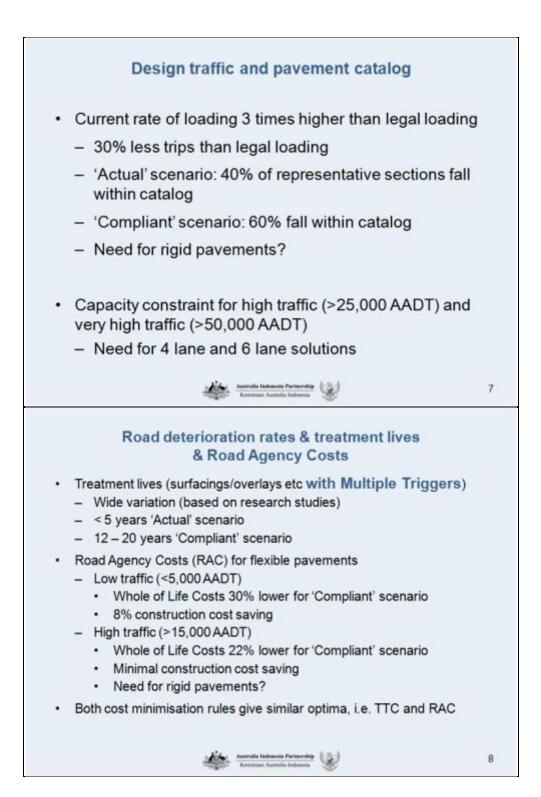
Copies of presentations are provided in Annexes 1 to 6.

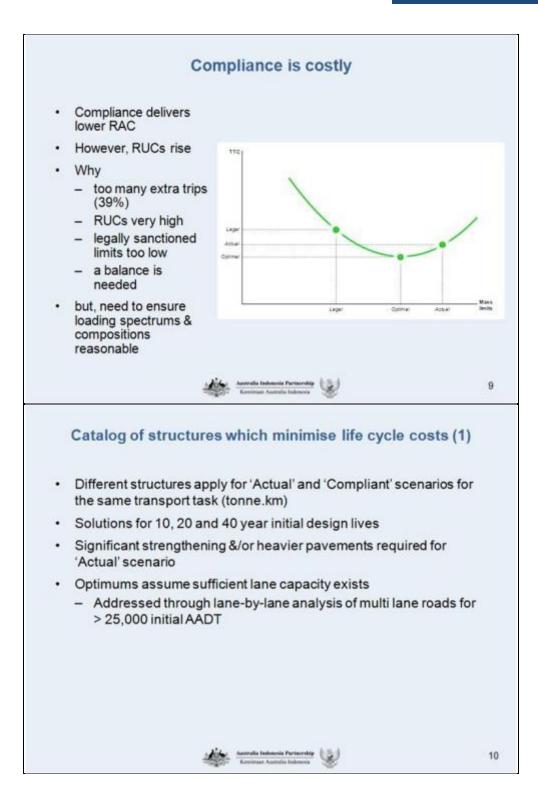
Translations of Supplements I and II to Bahasa Indonesia are included as Annexes 7 and 8. These translations will be an essential component of any future training programme. They require review before final issue.

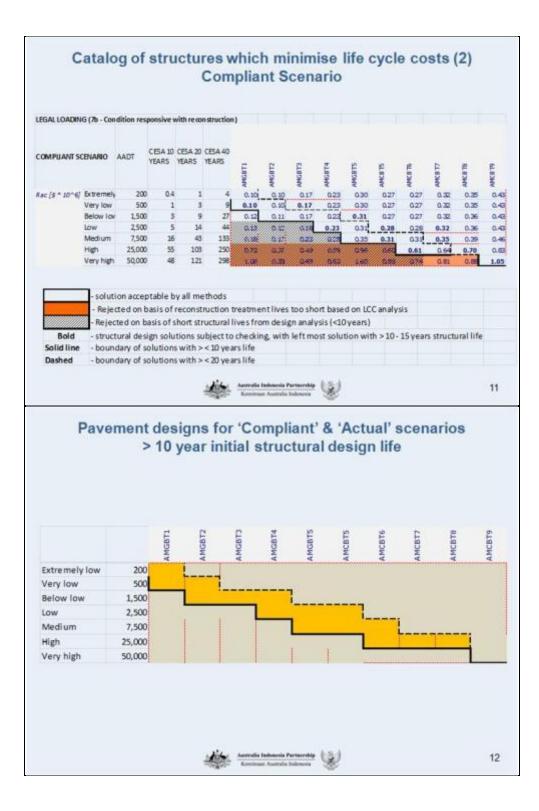

Every effort has been made to ensure that the Supplements are self explanatory. Training during the course of the Activity was directed towards Bintek and Pusjatan staff who will support future training activities. A further training programme will clearly be required to introduce Supplements I and II to a wider audience including

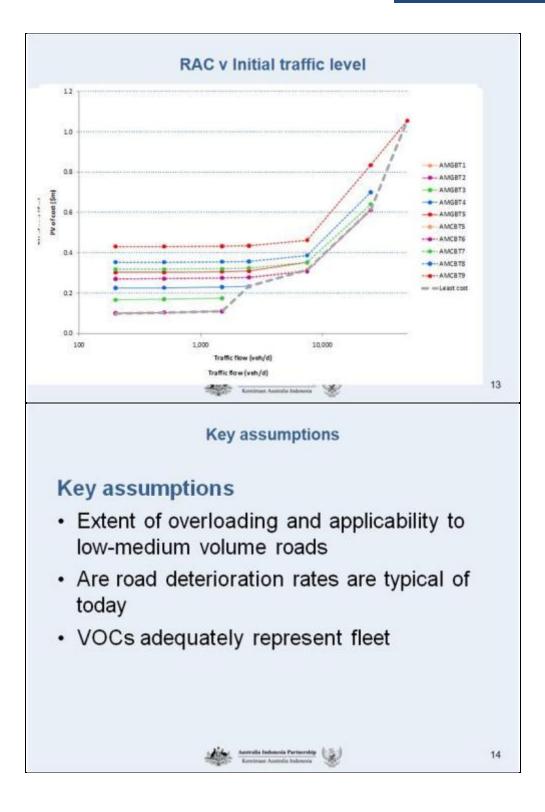
provincial and local level pavement and drainage designers. This training should be delivered during Phase II of the Activity.

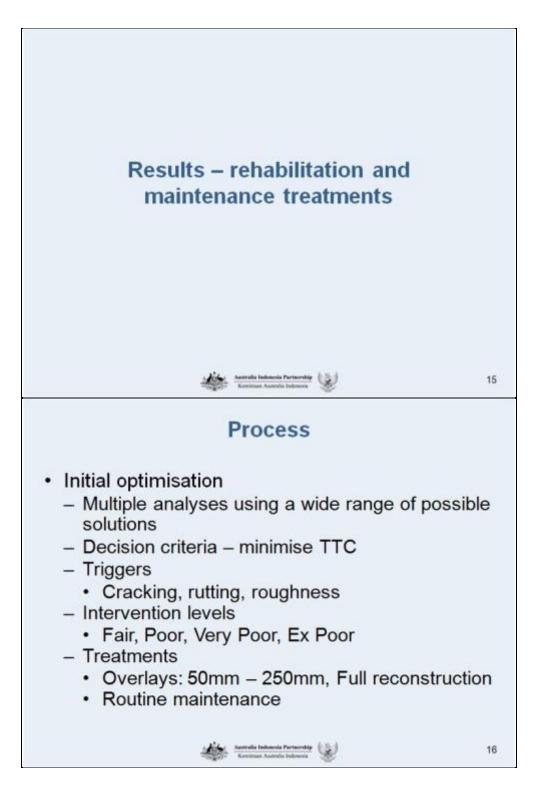
Deliverable 7 describes further training and other Activities required to support full implementation of Supplements I and II.

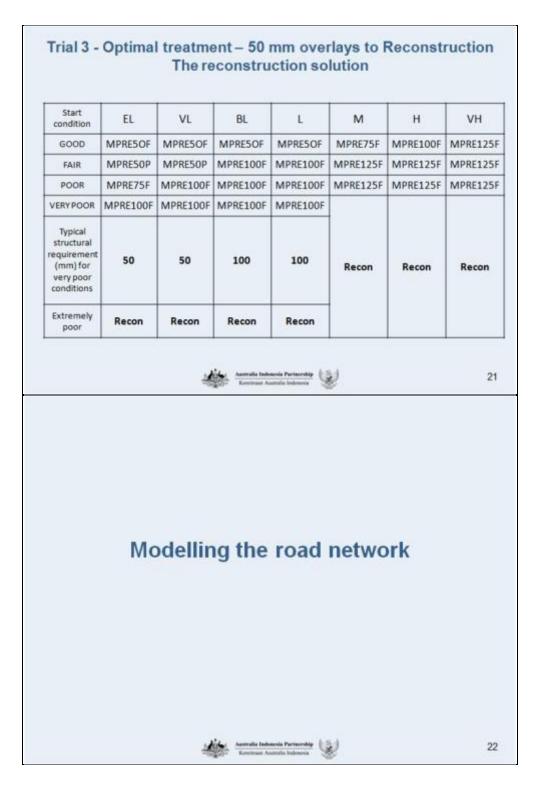

ANNEXE 1: ACTIVITY 201 ROAD DESIGN STANDARDS

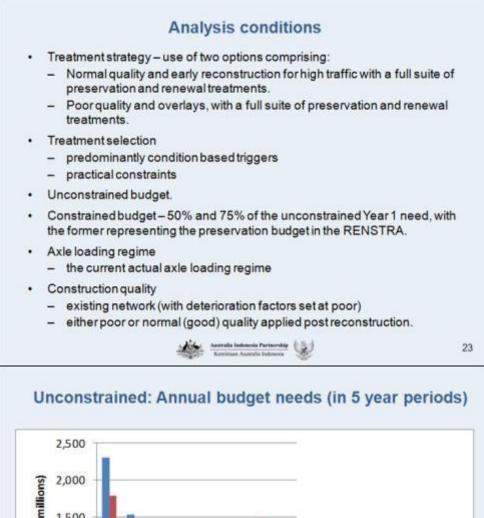


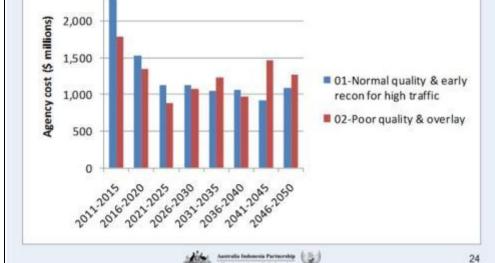


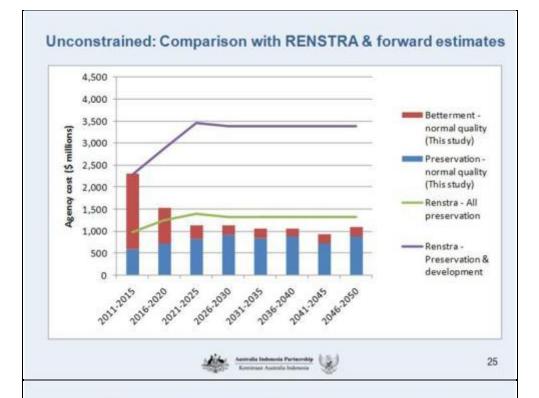

ANNEXE 1: ACTIVITY 201 ROAD DESIGN STANDARDS



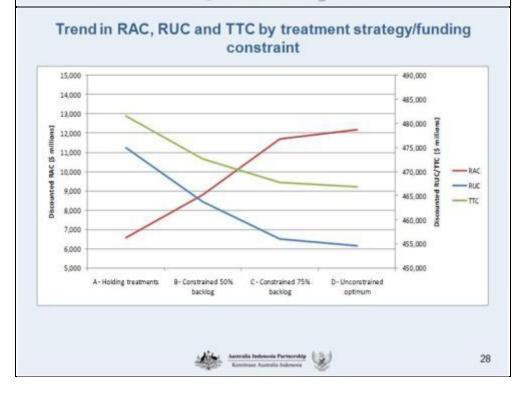







		C	ondition		
- Condition	Area of cracking (%)	Area of ravelling (%)	Standard potholes	Edge break (m ³)	Mean rut depth (mm)
Good	1	1	0	0	2
Fair	5	5	0	5	5
Poor	15	15	5	50	15
Very Poor	25	20	50	250	25
Conditio	on as a fund	Australia Induseda Por Ecreirana Australia la ction of I	anna S	ess (m/k	m IRI)
Conditio	on as a fund	ction of I	anna S	ess (m/k	m IRI)
	on as a fund	ction of I	roughne	ess (m/ki High	m IRI) Very high
_ Condition		ction of I	roughne		
- Condition New	Very low	Low	roughne Traffic Medium	High	Very high
- Condition New Good	Very low 1.8	Low 1.8	roughne Traffic Medium 1.8	High 1.8	Very high 1.8
Condition Condition New Good Fair Poor	Very low 1.8 3	Low 1.8 2.75	roughne Traffic Medium 1.8 2.5	High 1.8 2.25	Very high 1.8 2

Start							
condition	EL	VL	BL	L	м	Н	VH
GOOD	MPRESOV	P MPRESOF	MRUF50F	MPRE50F	MPRE75F	MPRE100F	MRUF100F
FAIR	MPRE50P	MPRE50F	MRUF50F	MRUF75F	MPRE75F	MPRE100F	MRUF100F
POOR	MPRE50P	MPRE50F	MPRE50P	MPRE75F	MPRE75F	MPRE100F	MRUF100F
VERY POOR	MPRE50P	MPRE50F	MRUF50F	MRUF75F	M000755	MRUF75F	MRUF100F
Tria	I 2 - Opti	imal trea	Aestratia Indu	50 mm	to 250 m		11
Start		imal trea	America Inde Kentingan An Atment –	50 mm	to 250 m		11
Start	12 - Opti	imal trea The r	Accretion Inde Konstant Accession Accession Atment — ehabilita	50 mm attion sol	to 250 m ution	ım overl	ays
Start condition	I 2 - Opti	imal trea The r	Accretion Inde Kereinaan Au Atment – ehabilita BL	50 mm ation sol	to 250 m ution M	H MPRE100F	11 ays VH MPRE125
Start condition GOOD	EL MPRESOF	imal trea The r VL MPRESOF	America Inde Kentraan America e ha bilita BL MPRESOF	50 mm tion sol	to 250 m ution M MPRE75F	H MPRE100F MPRE125F	VH MPRE125 MPRE125
Start condition GOOD FAIR	EL MPRESOF MPRESOP	imal trea The r VL MPRESOF MPRESOP	America Inde Kentralia America America Atment — ehabilita BL BL MPRESOF MPRE100F	50 mm ation sol L MPRE50F MPRE100F	to 250 m ution M MPRE75F MPRE125F	H MPRE100F MPRE125F	1 ays VH MPRE125 MPRE125
Start condition GOOD FAIR POOR	EL MPRESOF MPRESOP MPRE75F	VL MPRESOF MPRESOF MPRE100F	Autoratio Inde Kenterioan Au e ha bilita BL MPRESOF MPRE100F MPRE100F	50 mm tion sol	to 250 m ution M MPRE75F MPRE125F	H MPRE100F MPRE125F	VH MPRE125 MPRE125

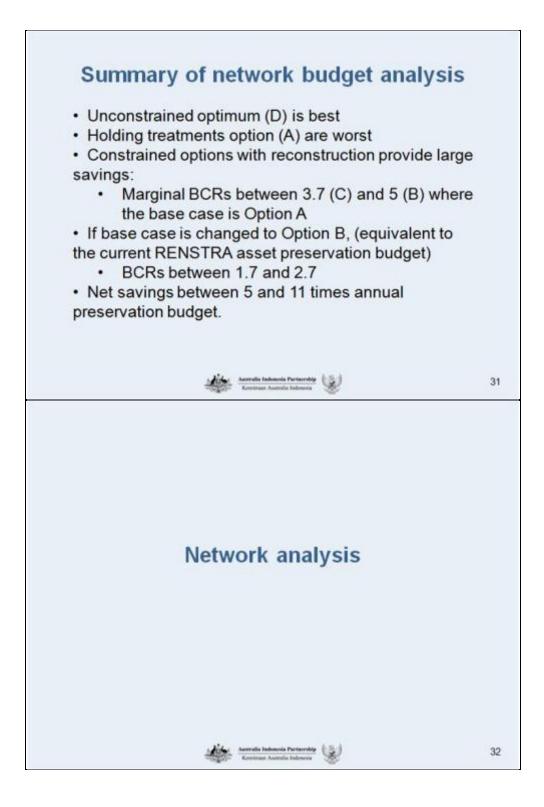

Annual treatment length for two options

Option	Works type	2011- 2015	2016- 2020	Long term
01-Normal quality and early	Periodic & Rehabilitation (%)	10%	14%	12%
reconstruction for high traffic	Reconstruction (%)	13%	5%	2%
02-Poor quality and overlays	Periodic & Rehabilitation (%)	24%	31%	22%
	Reconstruction (%)	9%	3%	1%

Treatment strategy/scenario	Very Low (AADT < 1000)	Low (AADT 1000 – 4999)	Medium (AADT 5000 – 14999)	High (AADT >15000)	ALL
01-Normal quality and early reconstruction for high traffic with unconstrained funding	10,488	20,744	26,208	80,654	26,780

Keelmaa Australia Indonesia Partaership

27

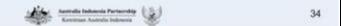

Treatment strategy/budget constraint A - Holding treatments		PV of	PV of	PV of	PV of RUC	Increase	Mar B(ginal CR
		RAC	RUC	ттс	savings	in RAC	Base = A	Base = B
		6.5	475.0	481.6	0	0	0	NA
B - (Constrained 50% backlog	8.8	463.8	472.6	11.2	2.2	5.0	0
C-(Constrained 75% backlog	11.7	456.0	467.7	19.0	5.1	3.7	2.7
D - Unconstrained optimum		12.2	454.6	466.8	20.4	5.6	3.6	1.7
		*	Asseratia Indone Kereiraan Aust		æ!			2
	Trend in roa s	CLASSIC CONTRACTOR	ghness y/fundir			treatme	nt	
				Class of the O	ptimised Work			
	Annual Averag		or each Surface me (weighted b)		S			

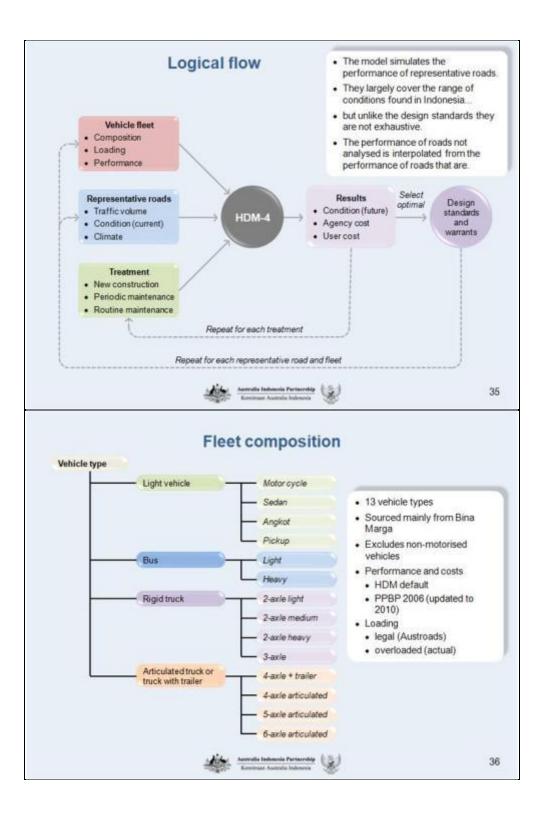

Year

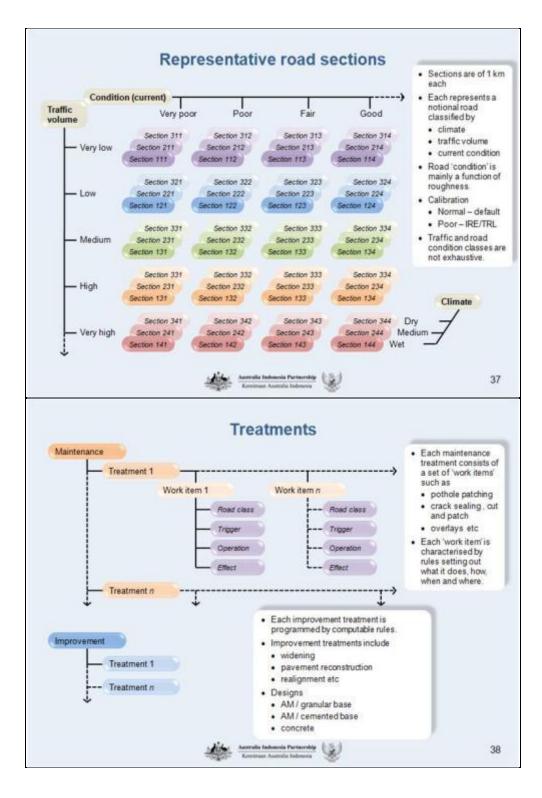
Kereiraat Australia Indonesia

2.8 2.4

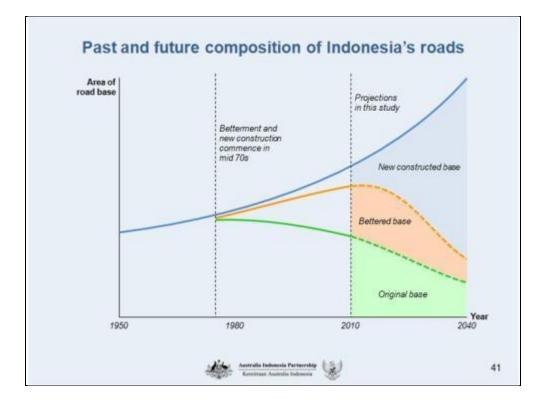
30

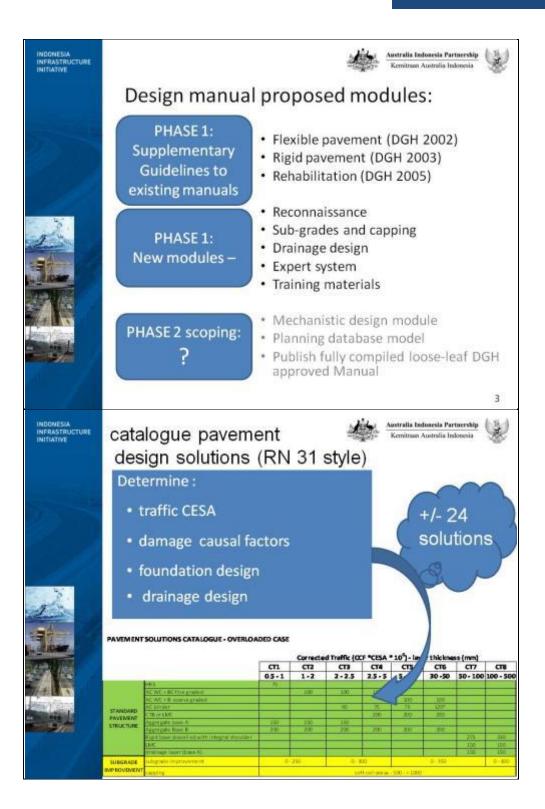


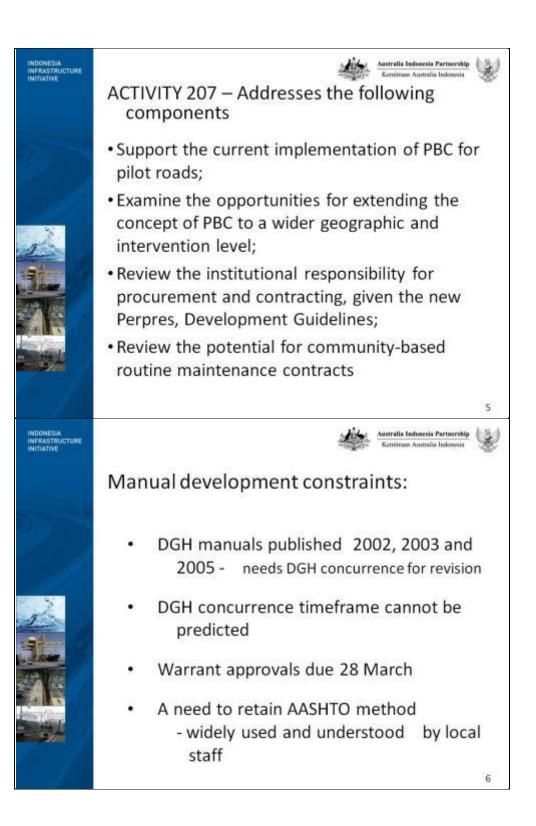

Deterioration factors

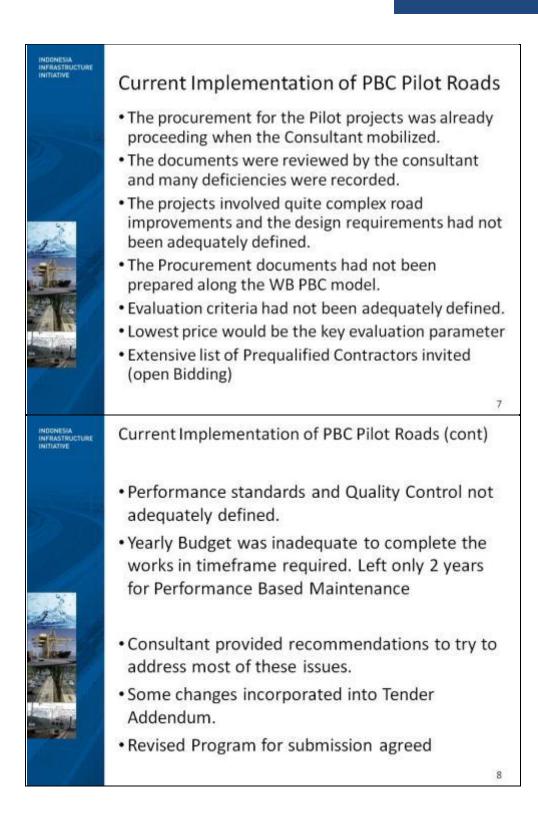


Construction Quality	Traffic (N	IESA/yr)	Kgm	Kgs
Well constructed roads with average to good asphalt surfacings in flat to rolling terrain and free flowing traffic	Heavy	> 0.75	1.3	1.0
conditions	Light- Medium	< 0.75	2.6	1.2
Poorly designed/constructed road, exhibiting failures due	Heavy	> 0.75	5.3	1.0
to poor road widening and reinstatement prior to overlay and poor mix design, in flat to rolling terrain and free flow traffic conditions.	Light- Medium	< 0.75	5.5	1.4
Well constructed roads located in mountainous regions with average to good asphalt surfacings	All .	Ali	2.6	1.5
Well constructed roads in mountainous regions with poor asphalt surfacings	All	All	7.0	1.5


Kgm – environment and design standard modifying factor (affected by location, X-section, drainage, etc) Kgs – structural deterioration progression factor (function of strength adequacy/variability relative to design traffic)







ANNEXE 2: FIRST PUSJATAN PRESENTATION

INCONESIA INFRASTRUCTURE INITIATIVE	Extending the Concept of PBC to a wider geographic and intervention level
	 Bintec keen for the consultant to identify suitable project for which more appropriate PBC documentation can be prepared.
Z	 Consultant has prepared some guidelines for selecting appropriate road section. Focus should be on Routine and Periodic Maintenance
	 Awaiting on review of revised Renstra to consider possible projects.
	 Need to identify Government Regulations that hinder or conflict with PBC concept.
	9
INCONESIA INFRASTRUCTURE INITIATIVE	Institutional Responsibility for Procurement and Contracting,
	 Review completed on the difference between KEPPRES 80/2003, and PERPRES 54/2010
	 Identifying Procurement Process and role of Satker both before and after the introduction of Balai.
	 Currently interviewed Balai IV and Balai VIII to review their role and the changed role of Satkers after Balai level introduced in 2008. Both are working differently. Will meet with more to learn of discrepancies.
	 Initial findings indicate that there has not been significant changes or gains from Balai introduction.
	 The reviews conducted thus far show that introduction of Balai is not addressing fragmented packaging.
	 Should consider institutional review and direct assistance to say 2-3 Balai's, and select candidate road for PBC
	10

Potential for Community-based Routine Maintenance Contracts

- Work will not commence on this component until Jan 2011.
- Initial thoughts are that CBM is not appropriate for National Highways, where the focus needs to be on larger, fewer projects, but can form part of the delivery mechanism of a Prime contractor engaged under PBC or Network Management Contracts.

ANNEXE 3: SECOND PUSJATAN PRESENTATION

Provisional design life (subject to life cycle cost model results):

pavement	years
Flexible	20
rigid	40
Overlay non structural	10
Overlay structural	10 - 20
recycling	20

Pavement Design Supplement

Section 7 Foundation Design

Foundation Design Supplement

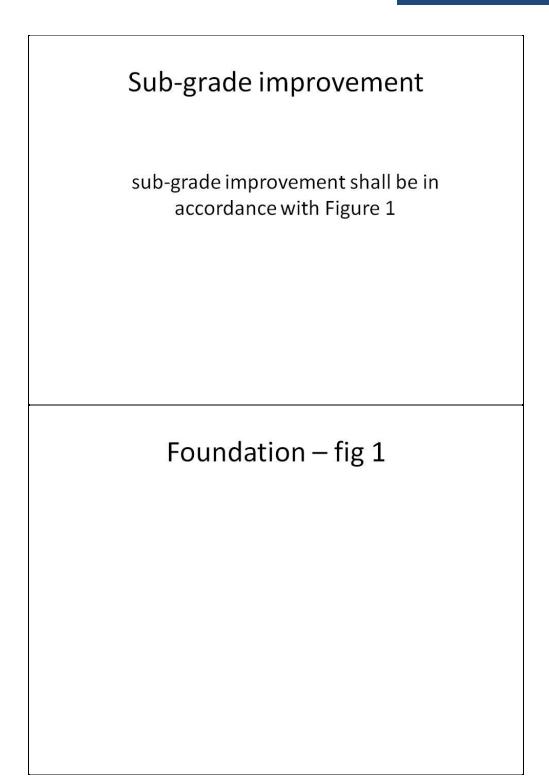
- Characteristic sub-grade
- Homogeneous sections
- Sub-grade edge dimensions
- Expansive soil
- Capping for soft soil
- Combined modulus

Foundation Design: responsibility for sub-grade improvement

As far as is possible, all sub-grade improvement requirements, shall be clearly described in contract documents. However the contractor shall remain responsible for providing sub-grade support in accordance with pavement design requirements even if not specifically described in the contract documents.

(reason: full extent of improvement required often only clear during grade preparation)

The design bearing capacity for normal and expansive sub-grades shall be the 4 day soaked, 95% MDD value provided field compaction is possible (ie not applicable to saturated alluvial soils or peat)


If the sub-grade is saturated and cannot be compacted:

a) the laboratory CBR value shall not be used in design;

b) a geo-textile separator and capping layer shall be provided and other sub-grade improvement measures shall also be required as described in section....

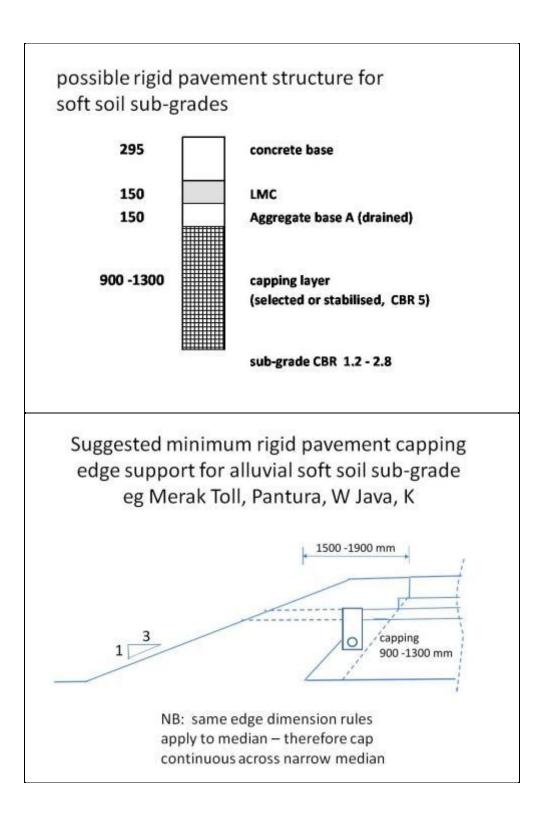
c) The top of the capping layer shall be deemed to have a characteristic CBR of 3%,

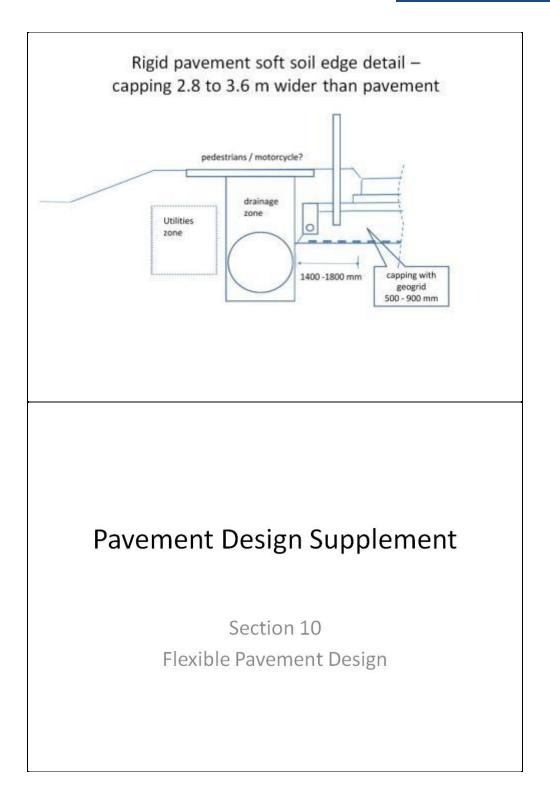
Characteristic CBR The design road length shall be divided into homogeneous sections such that: When there is sufficient unbiased CBR data available (> 8 tests per a) homogeneous section), the CBR data set for each homogeneous section shall have a coefficient of variation not exceeding 25% (standard deviation / mean). The characteristic sub-grade value shall be determined from the following formula: Characteristic CBR = mean - 1.3 x standard deviation b) When only limited data is available, homogeneous sections shall be determined visually (example: alluvial secton, hill section). DCP readings shall not be used to calculate subgrade-bearing capacity unless the sub-grade is at its wettest condition when tested. DCP values may be used to determine homogeneous sections Bearing capacity values back calculated from deflection data (FWD or BB) shall not be used to determine sub-grade bearing capacities but may be used to determine homogeneous sections

capping

- A geo-textile shall be used beneath capping placed directly on saturated ground,
- A geo-grid layer may also be used if cost reduction or other benefit can be demonstrated

CAPPING LAYER DESIGN RULES – CONCRETE PAVEMENT


- 1 Minimum for working platform
- 2 Minimum for cover over expansive soil
- 3 Minimum for cover over flood level and/or ground water
- 4 Minimum to limit concrete pavement curvature due to differential settlement !!
- 5 Minimum for CBR = $\{\{\Sigma h CBR^{0.3}\}/\Sigma h\}^3$


Foundations: capping layer design for rigid pavement

- Giroud / Hau working platform
- RTA deflection curvature > 800 m
- Permanent deformation of soft soil subgrade under dynamic loading

Capping on expansive soil

- Capping on expansive soil having an activity value exceeding 125 ... shall be as provided in Table ...
- The capping should include a low permeability layer or a stabilised layer
- Moisture variation in the sub-grade shall be minimised by shoulder sealing, lining of surface drains, provision of cut off drains or moisture barriers as appropriate, and positive drainage of the sub-base
- Subsoil drains shall only be used if free draining

Flexible Pavement Guideline Supplement issues:

 Overloading 	year 0-10	allow in design
	> year 11	assume legal load in design
Construction quality	· Louise · · · · · · ·	Lesson and the second second

- Construction quality there is no alternative to design for specified construction quality
- Other design deficiencies
 next slide

Design deficiencies:

- Optimum drainage 'm' factor adjustment
- Climate (wet season)
- Layered design analysis (AASHTO 3.1.5 Sub-layering design)
- > Asphalt 5th power rule
- Axle group effects
- Pavement and cap edge dimensions
- layer thickness optimisation

С	limate Zone	proposal	V.	Chart bas system Tra Multiplier	affic
Zor	e Description (consistent with HDM 4)	Example locations	Rainfall (mm/annum)	period sub grade wet (Rain >80mm/month (months))	Traffic Correction Factor
19	tropical, sub-humid with strongly seasonal rainfall	Kupang and islands further east except Irian Jaya	<1400	6	1
1	tropical, sub-humid with seasonal rainfall	Sumbawa, Bali	1400 1800	7	1.2
1	tropical humid with seasonal rainfall	Jakarta, Bandung	1900-2300	8	1.3
	tropical, per humid with year round rainfall and high humidity and/or moisture surplus	permanent high water table and irrigated areas, eg PANTURA, wet mountainous areas	>2300	12	2

Field condition	Water removal within:	Drainage quality	Percent of time close to saturation	'm' value for design
Cuttings with sub soil drain, hilly area, free draining	2 hours	excellent	5 - 25%	1.2
embankments with day-lighting of sub base	2 hours	excellent	5 - 25%	1.2
At grade with subsoil drain, flat area, occasional flooding of subsoil drain	1 day	good	5 - 25%	1.0
Embankments with low permeability verge and boxed sub-base	1 week	fair	5 - 25%	0.9
No sub soil drain in cut or at grade	1 month	poor	5 - 25%	0.7
Sub-grade permanently saturated during wet season and undrainable – no discharge point for sub-soil drains eg Pamanukan – NB: capping layer rules may also apply	Will not drain	Very poor	> 25%	0.4

Design cases: suggested 'm' values for general use

Traffic multipliers (TM)

Traffic multipliers are proposed to account for a number of key factors that contribute to pavement service life reduction in Indonesia factors included in the standard values provided in Table .. are:

- a) wet season duration
- b) Asphalt fatigue (5th power rule)
- c) Axle group effect on soft sub-grades

Table .. Traffic Multipliers

	pavement	CLIMATE ZONE					
FAILURE MODE	structure including capping	I	н	111	IV		
asphalt fatigue	all	1.80	2.12	2.39	3.60		
permanent	less than 1 metre	1.00	1.18	1.33	2.00		
deformation	more than 1 metre	1.10	1.30	1.46	2.20		

ANNEXE 3: SECOND PUSJATAN PRESENTATION

Section 5 Construction Considerations

Construction considerations – add to specification:

all sub-grades that can be dried to a condition that permits compaction, shall be compacted as specified: including cuttings, embankment, at-grade areas and ground beneath sub-grade improvement

all existing asphalt or rigid pavement at or beneath grade shall be scarified or removed as instructed by the Engineer

a pad-foot roller shall be used for compaction of clay and silty clay sub-grades

Compaction equipment shall have drum widths not exceeding the width to be compacted. Excavation or embankment necessary solely to provide access or operating width for compaction equipment shall not be measured for payment

5	Clir	mate Zone	proposal	N	Chart bas system Tra Multiplier	affic
z	Zone	Description (consistent with HDM 4)	Example locations	Rainfall (mm/annum)	period sub grade wet (Rain >80mm/month (months))	Traffic Correction Factor
	4	tropical, sub-humid with strongly seasonal rainfall	Kupang and islands further east except Irlan Jaya	<1400	6	1
	11	tropical, sub-humid with seasonal rainfall	Sumbawa, Bali	1400 - 1800	7	1.2
	ш	tropical humid with seasonal rainfall	Jakarta, Bandung	1900-2300	8	1.3
	IV	tropical, per humid with year round rainfall and high humidity and/or moisture surplus	permanent high water table and irrigated areas, eg PANTURA, wet mountainous areas	>2300	12	2

Provisional Traffic Multipliers for general use

	pavement	С	LIMAT	E ZON	E
FAILURE MODE	structure including capping	I	Ш	Ш	IV
asphalt fatigue	all	1.80	2.12	2.39	3.60
permanent	less than 1	1.00	1.18	1.33	2.00
Without adju (new propo	A	1.10	1.30	1.46	2.20
pavement may years instead	fail in 10				

Field condition	Water removal within:	Drainage quality	Percent of time close to saturation	'm' value for design
Cuttings with sub soil drain, hilly area, free draining	2 hours	excellent	5 - 25%	1.2
embankments with day-lighting of sub base	2 hours	excellent	5 – 25%	1.2
At grade with subsoil drain, flat area, occasional flooding of subsoil drain	1 day	good	5 - 25%	1.0
Embankments with low permeability verge and boxed sub-base	1 week	fair	5 - 25%	0.9
No sub soil drain in cut or at grade	1 month	poor	5 - 25%	0.7
Sub-grade permanently saturated during wet season and undrainable – no discharge point for sub-soil drains eg Pamanukan – NB: capping layer rules may also apply	Will not drain	Very poor	> 25%	0.4

EXAMPLE - STANDARD DESIGN SOLUTIONS CATALOGUES FROM PAVEMENT DESIGN SUPPLIMENT

CHART 1: FOUNDATION DESIGN FOR FLEXIBLE AND RIGID PAVEMENT

							Т	RAFFI	C CLA	SS				
		-		T1	T2	Т3	Τ4	T5	T6	T7	TB	T9	T10	T11
		Subgrade strength class		< 0.3	0.3 - 0.5	0.5 - 1	1 - 2	2 • 2.5	25-5	5-10	10- 30	30 - 50	50 - 100	100 200
_		SG6	≥6				noim	iprovei	nentre	equire	d			
		SG5	5							100	100	100	100	100
z	Sobgrade improvement (lime stabilisation or	SG4	4	100	100	100	100	100	100	150	150	200	200	200
FOUNDATION	selected embankment material)	SG3	3	200	150	150	150	200	200	250	250	250	300	300
FOUN		SG2.5	2.5	250	175	175	200	225	250	300	300	300	325	350
		SG2	2	300	200	200	250	250	300	350	350	350	350	400
	capping layer (granular)	SG1 ⁽⁵⁾	< 2 (5)	Prov	vision al ⁽²⁾	v(3) 900	- 120	0 mm gec	granul ⊨grid)	arcap	ping (o	r 500	-800 m	im +

Possible future distribution of treatment types – potential cost saving 30%

	NEAR FUTURE (% of National)	IDEAL 20 YEARS FROM NOW (% of National)	Design life Years TM x CESA
PERIODIC MAINTENANCE – Non structural overlay	10	5	10
BETTERMENT – structural overlay	10	2.5	10-20
NEW CONSTRUCTION OR RECONSTRUCTION	>2.5	2.5	20-40

Possible warrants to initiate investigation for reconstruction or recycling vs maintenance by overlay

	< 10 ⁶ TM x CESA	≥ 10 ⁶ TM x CESA
Deflection (BB) (mm)	> 3	> 2.4
Structural overlay thickness (mm)	> 90	> 195
Percentage of pavement severely distressed (%)	> 15	> 10

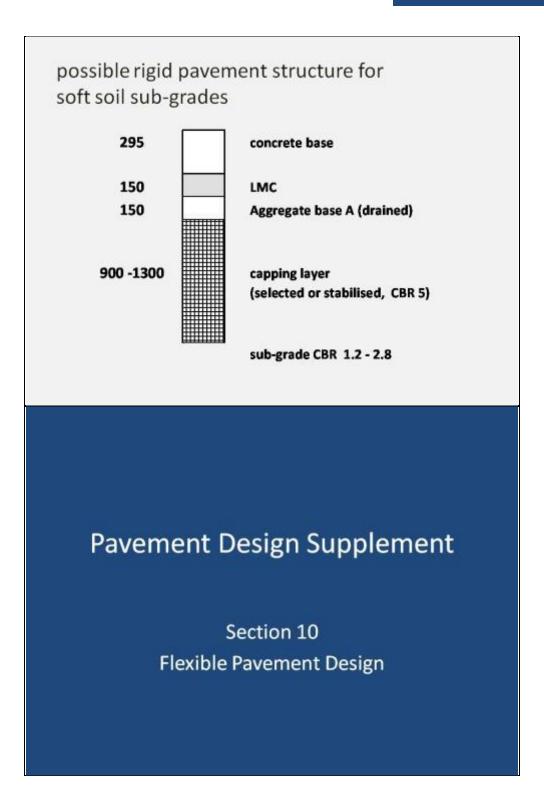
Provisional pavement re-gravelling or recycle planning solutions

	TM x CESA (4 th power)					
	0.5 - 2	2 - 50	> 50			
Туре	Granular overlay with HRS or AC	Recycled cement treated base	Case by case			
Cost Rp/m2	135,000 – 185,000	328,500 - 373,750				
Provisional #201 Traffic Class	T2 – T4	T4 – T9	T10-T11			

ANNEXE 4: PAVEMENT DESIGN SUPPLEMENT: PART I

Pavement Design Supplement

Section 7 Foundation Design



Foundation Design Supplement

- Characteristic sub-grade
- Homogeneous sections
- Sub-grade edge dimensions
- Expansive soil
- Capping for soft soil
- Combined modulus

CAPPING LAYER DESIGN RULES – CONCRETE PAVEMENT

- 1 Minimum for working platform
- 2 Minimum for cover over expansive soil
- 3 Minimum for cover over flood level and/or ground water
- 4 Minimum to limit concrete pavement curvature due to differential settlement to > 800 metres
- 5 Minimum for CBR = $\{\{\Sigma h CBR^{0.3}\}/\Sigma h\}^3$

Flexible Pavement Guideline Supplement issues:

- Overloading year 0-10 allow in design > year 11 assume legal load in design
- Construction quality

there is no alternative to design for specified construction quality

next slide

Other design deficiencies

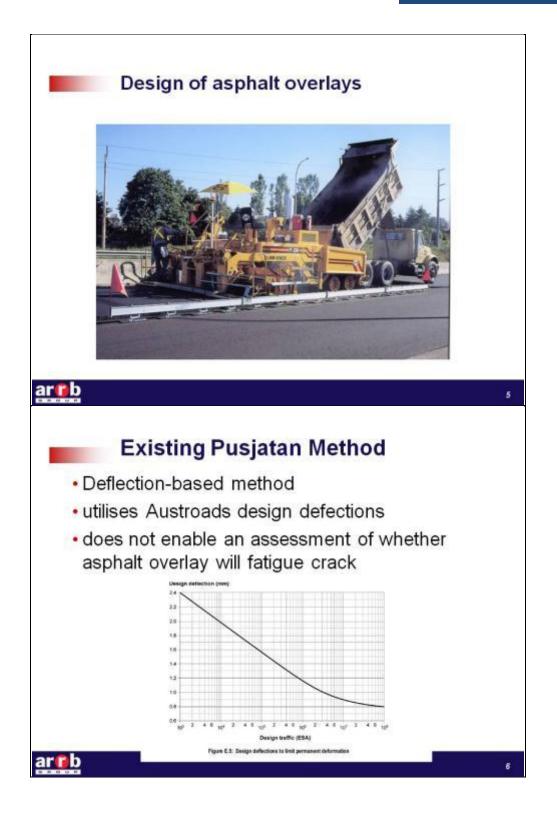
Design deficiencies:

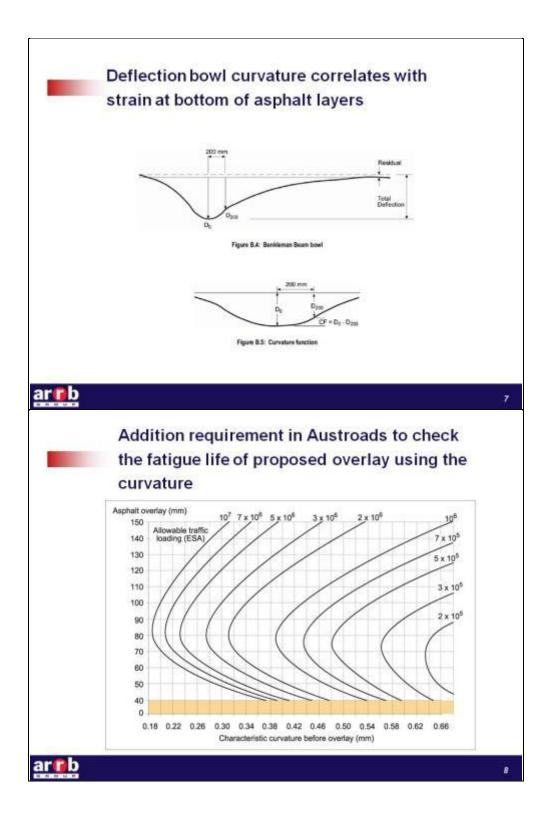
- Optimum drainage 'm' factor adjustment
- Climate (wet season)
- Layered design analysis (AASHTO 3.1.5 Sub-layering design)
- Asphalt 5th power rule
- > Axle group effects
- Pavement and cap edge dimensions
- Iayer thickness optimisation

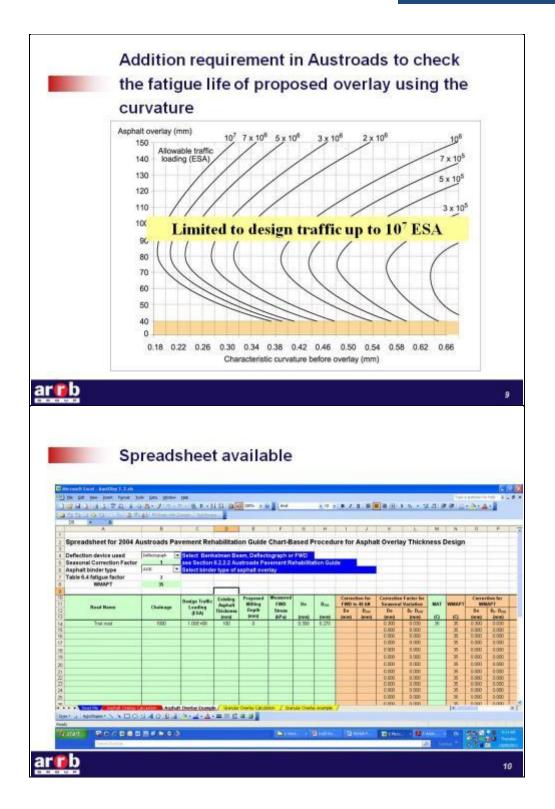
Pavement Design Supplement

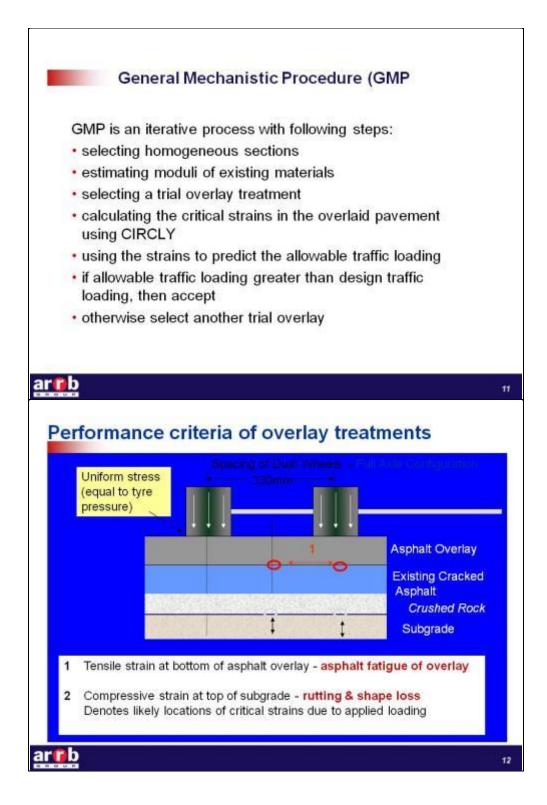
Section 5 Construction Considerations

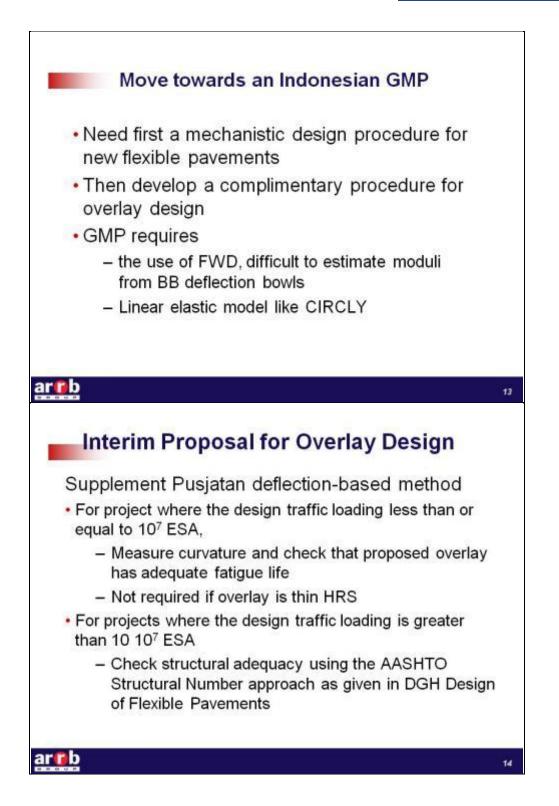
TERIMAKASIH

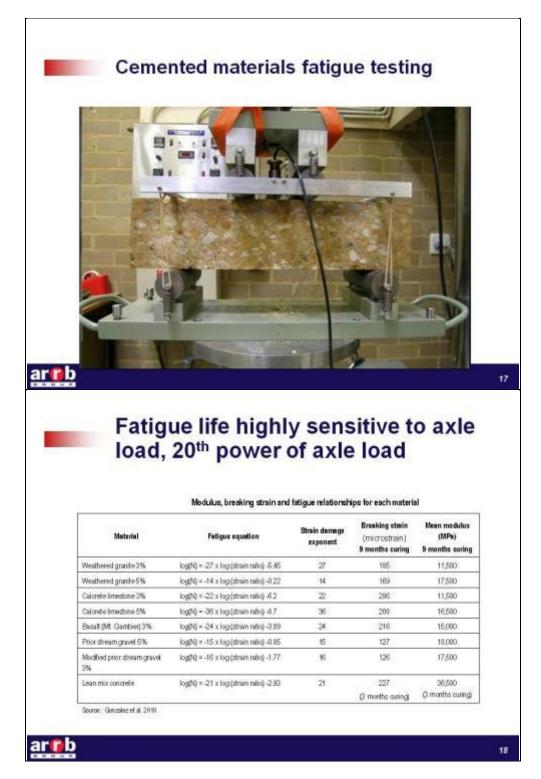

Key findings:

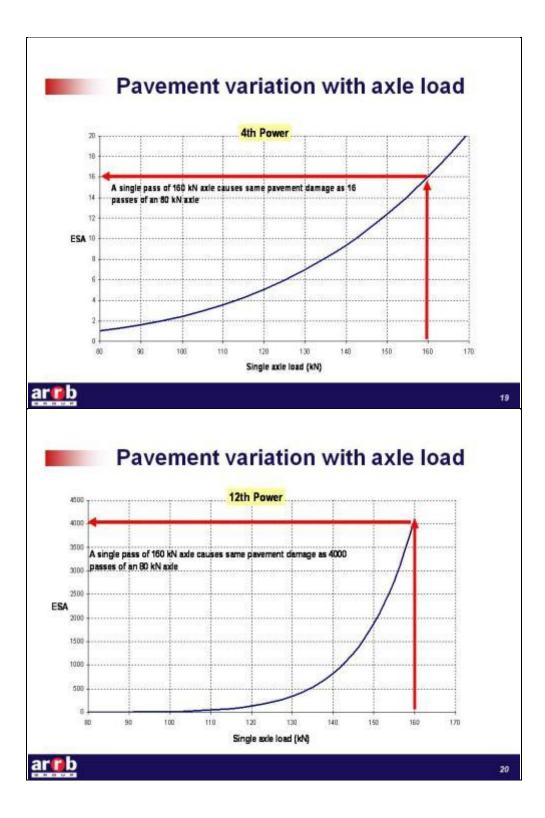

- Pavement types for 40 year life cycle
- Causal factors that reduce lifeigid paveme
- Foundation design
- r


ANNEXE 5: PAVEMENT DESIGN SUPPLEMENT: PART II



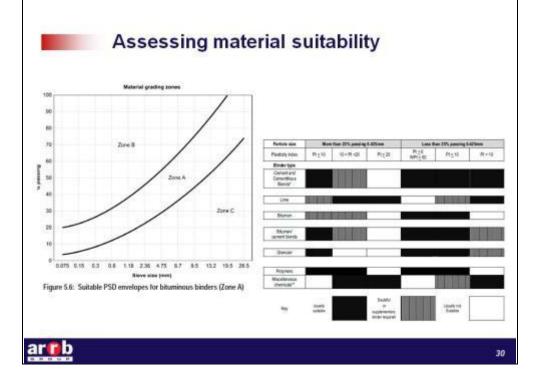


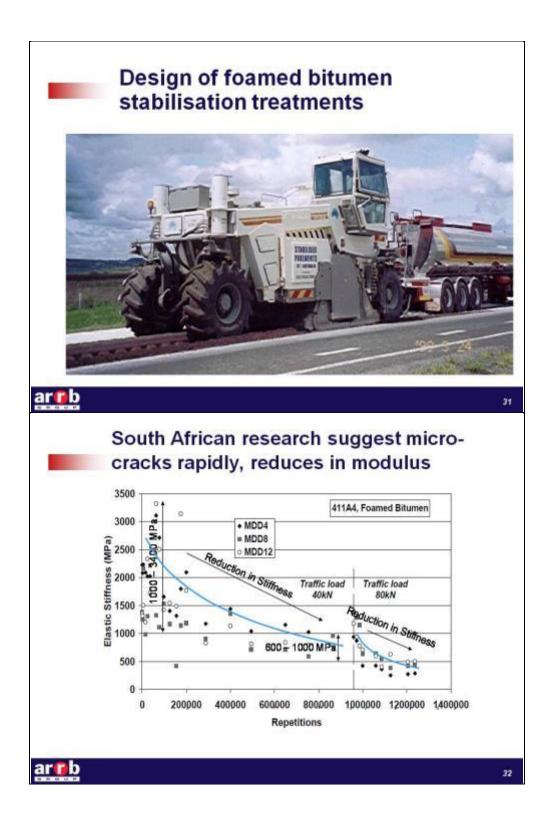






Under high Indonesia axle loads, very high CTB thickness if design to inhibit fatigue cracking of CTB arrb 21 Recommendation · Unlikely to be economic to design for fatigue of CTB · For practical construction thicknesses, assume cemented material will rapidly fatigue crack Reduce to a cracked modulus of 500 MPa Stiffness Note: For hot mix asphalt and stabilized layers, the modular ratio limit ensures that faster breakdown of stiffness due to weaker support is incorporated Effective ELTS of cement stabilized material on stiff support ELTS of cement stabilized material on soft support Axles Accommodated arnb 22





Step	Activity
1	Calculate the design traffic in ESA ₅ as described in Section 3.
2	Using the data from construction and maintenance records, test pits and cores determine the insitu material layer types, qualities and thicknesses.
3	Determine a subgrade design CBR for the project, based on insitu dynamic cone penetrometer (DCP), or laboratory soaked CBR testing of material recovered from the test pits.
4	Using step 3 data, assess whether the insitu materials are suitable for cement stabilisation.
5	Using the layer thicknesses, select a trial stabilisation depth and calculate the remaining depth of pavement material beneath the stabilised layer. For pavements with a subgrade design CBI less than 5%, a minimum 100 mm of pavement material is required below the stabilised layer.
6	Using the design charts in Annex 5, determine the asphalt thickness required over the FB stabilised material.

arrib

29

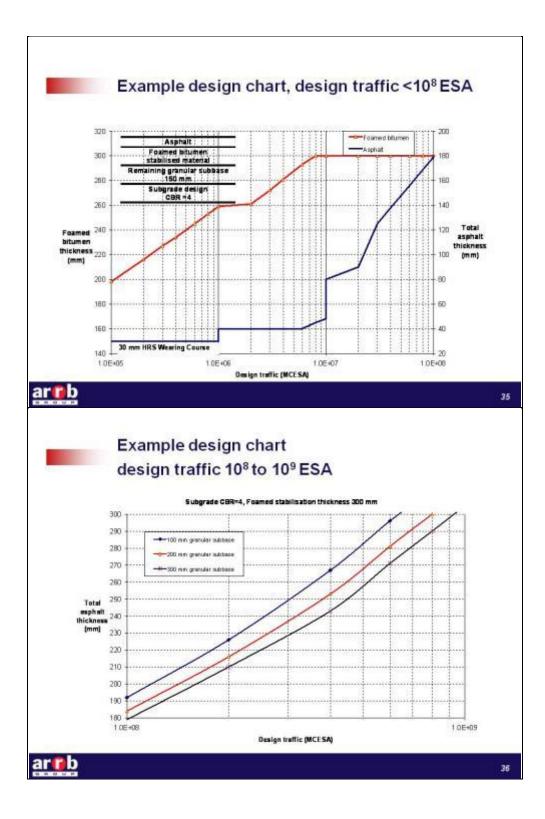
However, as FB more flexible than CTB, incidence of surface cracking much reduced

Table A2.1: Requirements for surfacing thickness for TRL method

Road type category	Traffic design standard (ESA x 10%)	Minimum thickness of surfacing (mm)
0	30 < Traffic < 80	100
1	10 < Traffic < 30	70
2	2.5 < Traffic < 10	50
3	0.5 < Traffic < 2.5	40
4	<0.5	40

Source: Memil et al. (2004).

arrb


33

Proposed minimum surfacings for FB

Design traffic (ESA ₅ x 10 ⁶)	Ninimum surfacing
>30	100 mm comprising 40 mm AC WC 60 mm AC Binder
10 < Traffic < 30	80 mm comprising 2 x 40 mm AC WC
1 < Traffic < 10	40 mm AC WC
<1	30 HRS WC or surface dressing

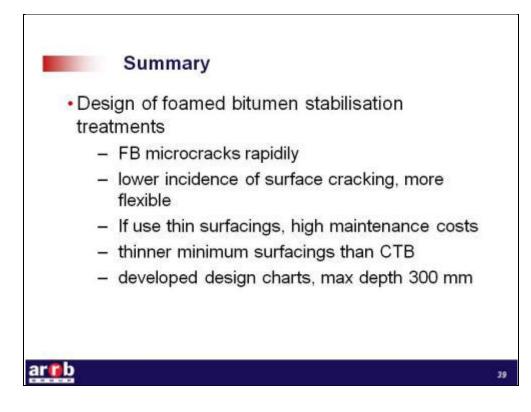
arrb

34

Steps in rehab design process

Step	Activity		
1	Calculate the design traffic in ESAs as described in Section 3.		
2	Using the data from construction and maintenance records, test pits and cores determine the insitu material layer types, qualities and thicknesses.		
3	Determine a subgrade design CBR for the project, based on insitu dynamic cone penetrometer (DCP), or laboratory soaked CBR testing of material recovered from the test pits.		
4	Using step 3 data, assess whether the insitu materials are suitable for FB stabilisation.		
5	Using the layer thicknesses, select a trial stabilisation depth and calculate the remaining depth of pavement material beneath the stabilised layer. For pavements with a subgrade design CBP less than 5%, a minimum 100 mm of pavement material is required below the FB layer.		
6	Using the design charts in Annexures 3 and 4, determine the asphalt thickness required over the FB stabilised material.		

arrb


37

Summary

- Overlay design proposed modification to Pusajatan
- · Design of cement stabilisation treatments
 - CTB will fatigue crack rapidly
 - If use thin surfacings, high maintenance costs
 - min 175 mm asphalt cover
 - developed design charts, max depth 300 mm
- Design of foamed bitumen stabilisation treatments

38

ANNEXE 6: SELECTION OF REHABILITATION TREATMENTS

Warrant 7

When an investigation for reconstruction is justified the rehabilitation treatment to be used may be selected by a **least whole-of-life cost analysis**.

Reconnaissance options

- Visual and IRIIRMS
- Deflection / test pit based
- Subgrade CBR
- Soft soil areas
- Drainage issues

Deflection triggers

Deflection values that justify a particular treatment:

1 Deflection triggers that justify an overlay:

below this level no overlay is required except for cosmetic reasons

2 Deflection triggers justifying an investigation for reconstruction

above this level overlay cost might exceed reconstruction or recycling cost

Traffic for		Deflection triggers justifying an overlay -		Deflection triggers justifying an investigation for reconstruction	
10 years (million ESA / Iane)	Surfacing type	Characteristic deflection Benkelman Beam (mm)	D ₀ -D ₂₀₀ Curvatur e FWD (mm)	Characteristic deflection Benkelman Beam (mm)	D ₀ -D ₂₀₀ Curvature FWD (mm)
<0.1	HRS	>2.3	not applicabl e	>3.0	not applicable
0.1 - 0.2	HRS	>2.1	0.63		
0.2 - 0.5	HRS	>2.0	0.48		
0.5 - 1	HRS	>1.5	0.39	> 2.5	0.66
1-2	HRS	>1.3	0.31	>2.4	0.54
2 - 3	AC	>1.25	0.28		0.46
2 - 5	AC	>1.2	0.23		0.39
5 - 7	AC	>1.15	0.21		0.35
7 - 10	AC	>1.1	0.19		0.31
>10	AC	not applicable – test pit / deflection / SN analysis is required			

Table 2.3 deflection triggers

Other triggers for an investigation for reconstruction /recycling
• IRI 8
 Existing pavement condition > 30 % distressed
 Existing pavement condition does not permit a deflection survey – reconstruction is needed in that case
Warrant 10: A full asphalt overlay may be used for any homogeneous section if:
 characteristic deflection > Table 2.3 or – IRI > Table 2.4 or - the existing asphalt shows severe distress comprising potholes, wide and interconnected cracks expected to form potholes, edge breaks and ruts exceeding 30 mm covering at least 5% of the total area and are widely distributed.

Warrant 11: *mill and replace of selected areas shall be applied if:*

• a full overlay is not required (refer Warrant 9)

 The existing asphalt shows severe surface distress comprising potholes, wide and interconnected cracks, edge breaks and ruts exceeding 30 mm limited to confined areas that can be treated independently.

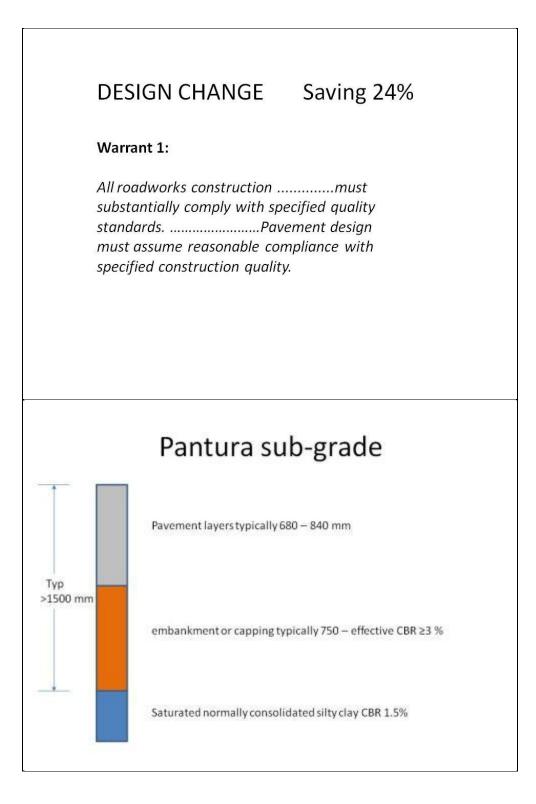
Warrant 12: Reconstruction shall be considered if any of the following conditions apply:

- deflections exceed the reconstruction trigger provided by Table 2.3 or
- roughness exceeding IRI 8 or
- severe distress requiring heavy patching exceeding 30% of pavement area

Materials 1: Aggregate Base A

- Supplements propose more CTRB
- CTRB requires good quality base A
- TFAC: serious BASE A segregation on all projects audited
- \leq 150 mm for best compaction
- Solution: specify a 20 or 25mm grading for Aggregate
 Base A (Australia = 20mm)

Materials 2: AC Base


- Also suffers from segregation
- Prone to stripping
- Usually not used in Australia
- The better properties of AC BC allow thickness reduction of heavy duty pavements in mechanistic design

Materials 2: AC Base 100 million MCESA

	Original Supplement	Revised – no AC Base GJ Good construction
AC WC	40	40
AC BC	60	60
ACBC (base layers)	-	145
AC Base	160	-
СТВ	200	200
Base A	200	150
Base B	200	
	Sub-grade – CBR 6	

500 million ESA₅ (Pantura)

	HLRIP II Pantura 2004 100 million esa	GJ Good construction No AC Base 500 million esa₅
AC WC	40	40
AC BC	60	60
ACBC (base layers)		250
AC Base	180	-
СТВ	-	200
Base A	200	150
Base B	200	

ANNEXE 7: PAVEMENT DESIGN SUPPLEMENT: PART I – NEW PAVEMENTS - BAHASA INDONESIA – FIRST DRAFT

ANNEXE 8: PAVEMENT DESIGN SUPPLEMENT: PART II – REHABILITATION AND RECYCLING OF FLEXIBLE PAVEMENTS - BAHASA INDONESIA – FIRST DRAFT