
Environmental Science Research Agenda

Lithosphere: EARTH PROCESSES, RESOURCES AND THE ENVIRONMENT

Litho/Geosphere

- Densest portion of the Earth system = the earth itself
- includes the planet's crust, its interior, rocks and minerals, landforms

Geological Hazards

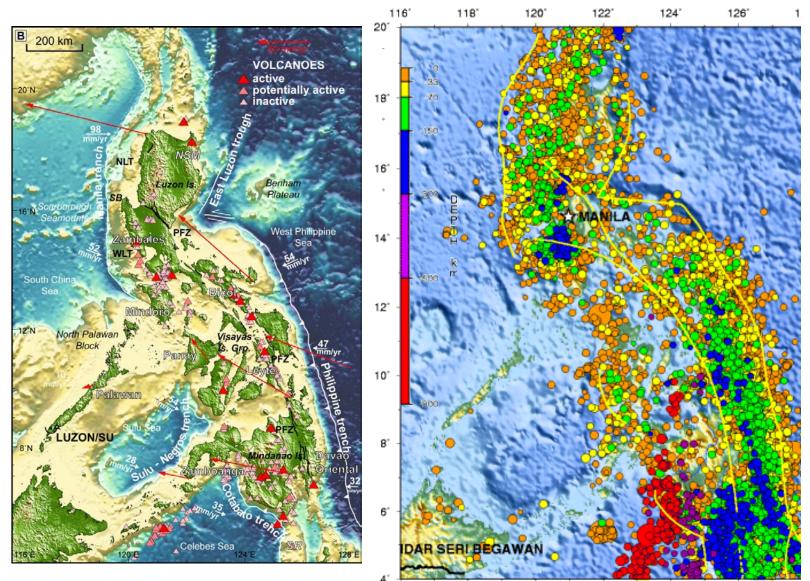
Naturally occurring phenomena which only become hazardous due to the presence of human development/ infrastructure

Believe it or not!!!

"Of all the nations in the world, the Philippines has experienced the most natural hazards in the twentieth century. India was a distant second, followed by the United States in third position"

--- Kovach, R.L., 1995. Earth's Fury: An introduction to natural hazards and disasters. New Jersey: Prentice Hall, Inc.

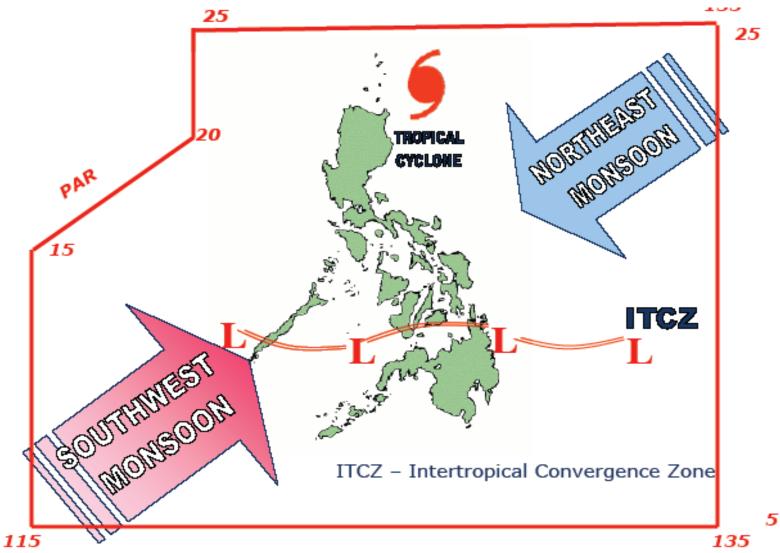
Attendant or Control factor/s


(e.g., tectonic/geologic/geomorphic setting/socio-economics)

Triggering mechanism/s

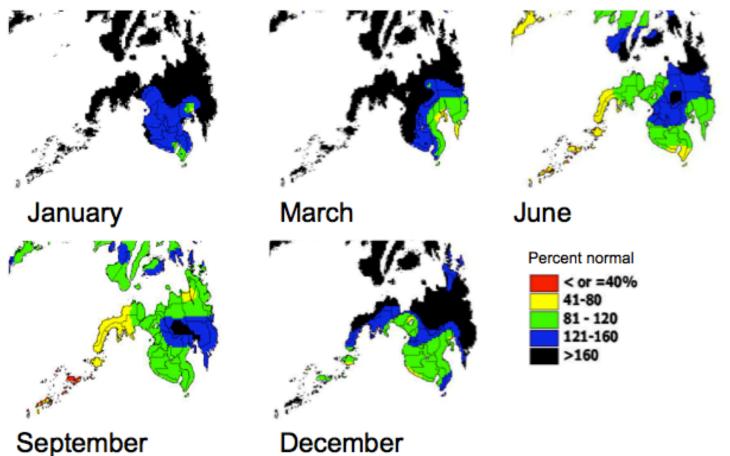
(e.g., precursor weather events, seismic activity)

Geologic disasters


Tectonic setting

Source: DOST-PHIVOLCS

Seismicity of the Philippines, 1990 - 2006


Meteorologic setting

Source: Climatology and Agrometeorology Division, DOST-PAGASA

Changing climatic conditions

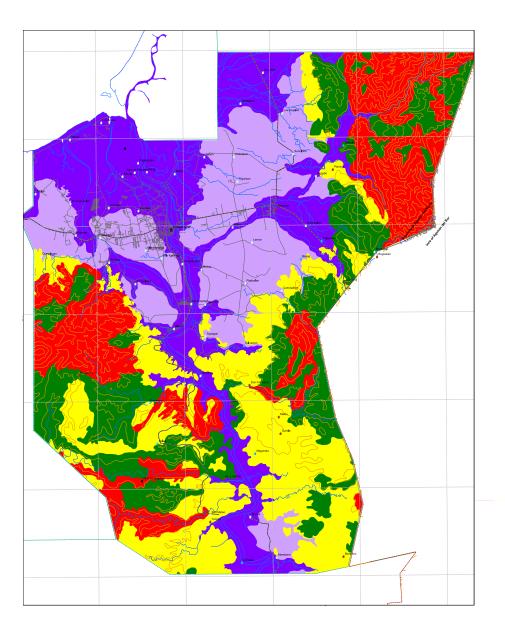
2011: Wet Mindanao

December 2011 Mindanao

No. of deaths	1,257
No. of evacuees	525,945
No. of houses damaged	13,337
Cost of damage	~P1.4B
24-hr rainfall at Lumbia, CDO	180.4 mm (555.1*)

* Monthly climatological normal

Geohazards in the Philippines


- Philippines inherently prone to numerous geohazards
- Expansion into more hazard-prone areas, greater exposure
- Socio-economic conditions = aggravated risks
- Changes in climatic patterns = increased risks
- Robust link between changing climatic conditions and a broad portfolio of potentially hazardous geological and geomorphological processes

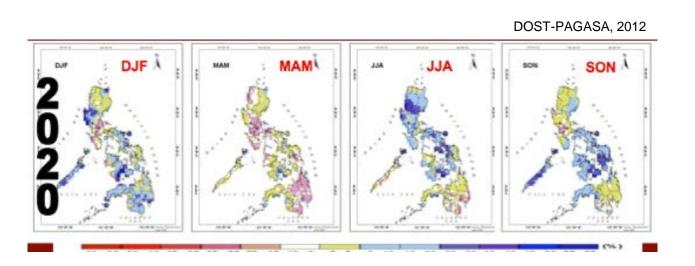
Potential geological and geomorphological hazards in the context of projected future climate changes

McGuire, 2012

	mechanism/potential relationship			references
potential hazard	with climate change	relevant climate drivers	environmental settings	(in this issue)
subaerial landslides and debris flows	permafrost thaw; pore-water pressurization; intense rainfall destabilizing regolith	temperature rise; ice-mass loss; intense precipitation	mountainous terrain; volcanic landscapes	Deeming <i>et al.</i> (2010), Huggel <i>et al.</i> (2010), Keiler <i>et al.</i> (2010) and Tuffen (2010)
glacial outburst floods (GLOFs)	glacier retreat; accumulation of meltwater in pro-glacial lakes	temperature rise; ice-mass loss	high latitudes; mountainous terrain; glaciated volcanic landscapes	Keiler <i>et al.</i> (2010) and Tuffen (2010)
earthquakes	ice-sheet and glacier wastage; ocean island and ocean margin loading due to sea-level rise	temperature rise; ice-mass loss; ocean volume increase	high latitudes; glaciated terrain at mid-to-low latitudes; ocean basins and margins	Hampel et al. (2010) and Guillas et al. (2010)
volcanic activity	unloading due to ice-sheet and glacier wastage; loading due to sea-level rise; pore-water pressurization; intense rainfall destabilizing regolith	temperature rise; ice-mass loss; intense precipitation; ocean volume increase	volcanic landscapes at all latitudes	Deeming et al. (2010), Sigmundsson et al. (2010) and Tuffen et al. (2010)
tsunamis	submarine and subaerial slope failures and volcano lateral collapses; gas-hydrate breakdown; ocean load-related earthquakes; ice quakes	ocean temperature rise; ocean volume increase; intense precipitation	ocean basins and margins	Day & Maslin (2010), Maslin <i>et al.</i> (2010), Dunkley Jones <i>et al.</i> (2010) and Tappin (2010)

Geohazard maps

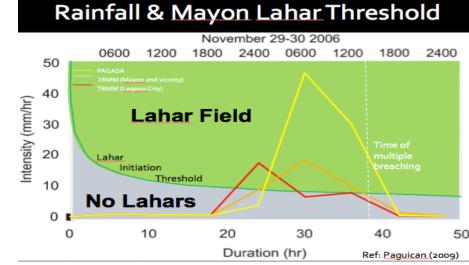
Province of Agusan del Norte


GAPS

- Need for more effective communication methods
- Sluggish translation of academic information to practical/common knowledge

Knowledge Gaps

- Complexity of climate change-geohazard relationship, but interactions are not always those expected
- increased frequency of extreme weather events = increased impacts, but how will this evolve with further changes in climate
- questions on longer-term changes in the climate and the environment that may influence observed relationships with hazards



Proposed Solutions: CCA needs

- Active contribution to generation of higherresolution, predictive and detailed geohazard maps.
- Encourage development of cheap, reliable EWS
- Devise effective communication techniques
- Support needed: availability of experts and human resources
- Through scholarships and incentives
- Urgent need for CCA, DRRM = incorporate in the educational system

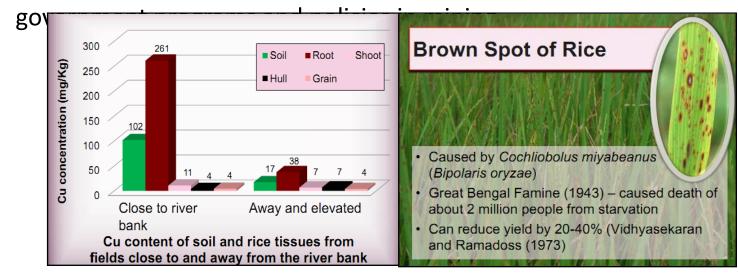
Proposed Solutions: Research Agenda

- Increase/expand basic researches on geohazards and geology/tectonics of the Philippines
- Investigate correlations in the geological record between climate change and significant hazardous events
- Modeling techniques to investigate the influences of changing environmental conditions on potentially hazardous geophysical systems
- Identify priority locations
- Promote: integrative researches

Mining

- High environmental impact: alterations to the original biogeophysicochemical parameters.
- Environmental Issues:

biodiversity loss, metal contamination and pollution, acid mine drainage, land use planning and value added processes.


 Humans and Health Issues: mining communities and small scale miners.

Mining

- Proposed Researches and Solutions:
- **Technology base research projects** appropriate mining technologies, metallurgy and remediation technologies and value adding technologies.
- Interdisciplinary academic approach curricular revision to include special topics on post mining activities and the incorporation of local and traditional ecological knowledge.
- Comprehensive land use plan (CLUP) sustainable development align to

Mining

- Accreditation of small scale miners green mining technology
- Government and academe initiated projects inventory and transfer of technologies, community based livelihood programs supported by large scale mining companies through CSR.

Phytotechnologies: "Clean and Green"

Agriculture

- Environmental Issues:
- Traditional agriculture, floods and drought affecting crops, pesticide and fertilizer use, irrigation, land use planning, food vs biofuel.
- Proposed Researches and Solutions:
- Alternative methods in agriculture, resilient crop technologies, adaptive production system, weather predictability.

Energy

- Environmental Issues:
- Extensive use of fossil fuels, high cost of energy generation and technology, effects of climate change
- Proposed Researches and Solutions:
- Search and proper utilization of alternative energy resources (geothermal, hydropower, solar and wind power)
- Technology base applications of alternative energy (robust, cost effective , sufficient energy)

