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Abstract

This study attempts to investigate the dominant spatio-temporal structure of mean,
maximum and minimum surface air temperatures (Tuean, Tmaxs Imin), dewpoint
temperature (74, ) and computed mean, maximum and minimum apparent temperatures
(Tumean> Tamax>- Tamin) n Thailand. The atmospheric data used in this study are based on
monthly data collected from 33 stations for period of 1951-2003. Empirical Orthogonal
Functions (EOF) analysis and other multivariate statistical techniques were used to
reveal the dominant modes and temporal patterns.

An analysis indicates that the EOF1 mode of all temperature variables accounts
for substantial amount of the total variance ranging from 61.2% to 71.3%. The EOF1
mode of all temperature variables is characterized by a monopole of spatial patterns,
which correlations coefficients are positive and relatively high and about the same
magnitude at all stations. Such a unique pattern implies a high intercorrelation and a
relatively uniform variance distribution of surface air temperatures at all stations. Hence,
the EOF1 mode is a robust representative of the dominant spatio-temporal structure of
surface air temperatures in Thailand that probably share a common influence from the
same origins.

On the basis of the EOF results, the time variability of the EOF1 mode of all
temperature variables in Thailand has oscillated at three dominant timescales over the
last 53 years: interannual/decadal timescales and long-term trends. The El Nifio-Southern
Oscillation (ENSO) cycles are the most prominent timescale of interannual variability in
surface air temperatures in Thailand. There is a significant indication that all temperature
variables tend to be higher (lower) than normal during the El Nifio (La Nifa) years. The
possible linking pathway between ENSO event and interannual changes in surface air
temperature in Thailand may be through the “atmospheric teleconnections”, establishing
by the shifts in the location of the organized rainfall in the tropics and the associated
latent heat release.

The EOF1 coefficient series of Tiue, Tamaes Lmin a0d Tumin also exhibit salient
decadal changes which are significantly related to the low-frequency component of
ENSO cycles. The overall warming trends of T,uv, Tamaxs Tmin @and Typin since the late
1970s have been in phase with the persistent and exceptionally strong warm phase of
ENSO cycles. Furthermore, the EOF1 coefficient series of 7,;, and T, have
monotonically increased at a faster rate than those of 7,4y, and T4 since the mid 1950s
that resemble the greenhouse warming fingerprint observed in instrumental records and
predicted by some models. At this point, however, it is unclear whether the recent
changes in Tyux, Tamaxs Tmin and Tymin are in direct response to greenhouse gas forcing, or
whether these changes are associated with the natural decadal timescale variation in the
atmospheric circulation. Another conspicuous feather is that there is a significant
narrowing for diurnal temperature ranges over most parts of Thailand, resulting from the
differential changes in maximum and minimum temperatures.

The results from this study provide a vital clue of some key aspects of short-and-
long term climate change in Thailand that has important implications for future
prediction and environmental management. There is little doubt that climate change is an
active and critical component of “our Earth System” as current and future threats for



human and environmental systems that is now happening even on regional/local scales
and will likely continue or even intensify in the near future.
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1. Introduction

Variability and change are realities of the climate system, and static, so-called
equilibrium, conditions are unlikely to be a part of the system on almost any time scale.
The palaeco-records clearly show that the global climate has varied continuously on all
time scales, with global mean condition masked by immense variations in regional
responses (Kasting, 1993; Petit et al., 1999; IGBP, 2001a,b; IPCC, 2001a). Fluctuations
of surface temperature are the most obvious and probably well-documented key indicator
of global climate change (e.g., Hurrell, 1995,1996; Easterling et al., 1997; Enfield and
Mestas-Nufiez, 1999; Mann et al., 1999; Easterling et al., 2000b; IPCC, 200la;
Trenberth, 2001). Surface temperature plays a crucial role in regulating evaporation and
transpiration processes and so have direct connections to both the hydrological cycle and
surface energy budget. Because temperature significantly affects biological processes
and metabolic rates at almost every trophic levels (Hughes, 2000; McCarty, 2001;
Ottersen et al., 2001; Walther et al., 2002), ecosystem functioning and dynamics, as well
as human health and comfort are all inevitably influenced by changes in both magnitude
and rate of surface temperature through a variety of mechanisms. The additional stress of
surface temperature changes will interact in different ways across regions that may
reduce the ability of some environmental systems to provide, on sustained basis, key
goods and services needed for successful economic and social development. However,
there are many uncertainties in determining their impacts and predicting probable
climate scenarios for the future, due to our incomplete understanding of interlinks of
global climate system, forcings, responses and consequences (IPCC, 2001a). Studies of
global and regional surface temperature variations and their impacts have, therefore,
undergone a quantum jump and are one of the fundamental aims of global change
research (IGBP, 2001a,b; IPCC, 2001a).

There is now growing evidence that human activities have increasingly
influenced the global climate through the enhanced greenhouse effect, by past and
continuing emission of carbon dioxide (CO,) and other gases which will cause the
temperature of the Earth’s surface to increase —popularly termed the “global
warming”’(IGBP, 2001a,b; IPCC, 2001a; Trenberth, 2001). For a thousand years prior to
the industrial revolution, abundance of the greenhouse gases was relatively constant.
However, as the world’s population increased, as the world became more industrialized
and as agriculture developed, abundance of the greenhouse gases increased markedly.
The amount of CO, in the atmosphere has increased by about 31 percent since 1750
(IPCC, 2001a). The modern instrumental records indicate that surface temperature
changed in a similar sense to atmospheric CO, concentrations, with a global mean
warming of 0.6% 0.2 °C over the past 100 years and the 1990s being the warmest decade
on record (IPCC, 2001a). Synthesis of information from tree rings, corals ice cores, and
historical data further indicates that the 1990s were the warmest decade in at least the
past 1,000 years (IGBP, 2001a,b; IPCC, 2001a). In the light of new and stronger
evidence and taking into account the remaining uncertainties, the Intergovernmental
Panel on Climate Change (IPCC) concluded in 2001 that most of the warming observed
over last 50 years is attributable to the increase in atmospheric greenhouse gases due to
human activities, and that global warming was indeed happening faster, and the
consequences looked more severe than predicted.
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On interannual and decadal timescales, there is also good evidence that
fluctuations of regional surface temperatures are somewhat closely linked to changes in
large-scale atmospheric and ocean circulations, as well as deep ocean heat content (e.g.,
Loon and Rogers, 1978; Rogers, 1984; Li, 1990; Leathers et al., 1991; Yasunari and Seki,
1992; Trenberth and Hurrell, 1994; Hurrell, 1995,1996; Mantua et al., 1997; Zhang et al.,
1997; Qian and Zhu, 2001). Persistent large-scale atmospheric patterns tend to be
wavelike so that regional changes of atmospheric heating, if powerful and persistent
enough, can give rise to a sequence of remote atmospheric teleconnections (Horel and
Wallace, 1981; Wallace and Gutzler, 1981; Trenberth, 1990; Zahn, 2003). Thus a
number of well-separated areas of anomalous temperature with opposite character may
be produced. The strongest teleconnection pattern which has well documented within the
earth’s climate on seasonal to decadal timescales is the set of processes known as the El
Nifio-Southern Oscillation (ENSO). This phenomenon is the strongest natural mode and
involves a set of complex interactions between the tropical oceans and the atmosphere
centered on the Pacific and Indian Ocean basins with the life-cycle typically lasting from
2-7 years (e.g., Horel and Wallace, 1981; Philander, 1990; McPhaden, 1999). The ENSO
is now known to be at the root of many of the disastrous interannual climate fluctuations
affecting tropical and subtropical countries (Rasmusson and Wallace, 1983; Hawana et
al., 1989b; Philander, 1990; Li, 1990; Wang and Li, 1990; Janicot et al., 1996; Ware and
Thomson, 2000; Barlow et al., 2002; Hoerling and Kumar, 2003; Huber and Caballero,
2003). Moreover, warming over the large continental areas and cooling over the North
Pacific and North Atlantic in the winter during the past three decades is another example
of more complex consequences of interconnected climate networks and interplay of
different climate modes (IPCC, 2001a). This cold ocean-warm land pattern has been
linked to changes in the atmospheric circulation over the northern hemisphere, in
particular, to the tendency in the past few decades for the North Atlantic Oscillation
(NAO) to be in its positive phase (Hurrell, 1995; Hurrell and Loon, 1997). Similarly, the
Pacific-North American (PNA) teleconnection pattern has been in a positive phase in
association with the tendency for favoring more the warm El Nifio phase of ENSO
phenomenon following the 1976/77 climatic regime shift (Nitta and Yamada, 1989;
Trenberth, 1990; Hurrell, 1996; Zhang et al., 1997).

Although global temperature has increased in the past century, its pattern was not
spatial uniform or temporal monotonic, with large regional differences (Chapman and
Walsh, 1993; Schlesinger and Ramankutty, 1994). For example, the winter temperature
in northern Europe has increased during the past 30 years, whereas northeastern America
and Greenland have experienced increasingly colder winters in the same period (Hurrell
and Loon, 1997). Much of this variation in regional winter climate conditions in the
northern hemisphere can be attributed to variations in the natural climate pattern over the
North Atlantic or NAO (Hurrell and Loon, 1997). The climate of a given region is
determined by the interaction of forcings and circulations that occur at the planetary,
regional and local spatial scales, and at a wide range of temporal scales (IGBP, 2001a,b).
Planetary scale forcings regulate the general circulation of the global atmosphere. This in
turn determines the sequence and characteristics of weather events and weather regimes
that characterize the climate of a region. Embedded within the planetary scale circulation
regimes, regional and local forcings and mesoscale circulations modulate the spatial and
temporal structure of the regional climate signal, with an effect that can in turn influence
planetary scale circulation features. Because of their complex interaction, there is
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increasing need to better understand the processes that determine regional climate, along
with the teleconnection effects of regional forcing anomalies (IPCC, 2001a).

The most highly developed tool which has currently used to predict future
climate is known as coupled general circulation models (GCMs). These models are
based upon sound, well-established physical principles and use descriptions in simplified
physical terms of atmosphere, ocean and land processes. The predictive powers of a
model can be tested by running the model with known forcing from the past through it
and then comparing the results to actual climate records. Although models are
exceedingly useful tools for carrying out numerical climate experiments, they do have
limitations and must be used carefully (Trenberth, 2001). The latest models have been
able to reproduces the major large-scale features of atmosphere, ocean and land
processes in the past century or so with increasing accuracy (IPCC, 2001a). However, on
regional scales (2000 km or less), there are significant errors in all models (Mearns et al.,
1995; IPCC, 2001a). This is mainly due to the complexity and scale of the physics
involved and difficulties in relating the area-mean GCM output to the point or station
scale (Osborn, 1997; Osborn and Hulme, 1997; Boyle, 1998). Moreover, our climate
models so far are of relatively coarse resolution, and simplified versions of the real world
(IPCC, 2001a; Trenberth, 2001). Given the unproven reliability of GCMs at small scales
especially in simulating surface temperature, it is desirable to search for signals of
surface temperature changes in the observational records.

A surface temperature signal or any other climatic variables at any fixed
location/region will typically consists of a complex mixture of variation, resulting from
interactions among physical processes within the atmosphere-ocean-cryosphere system
that operate on a wide range of spatial and temporal scales. Interactions within the
components of the climate system usually include positive and negative feedbacks.
When these feedbacks combine properly and balance each other, they can give rise to
irregular but can be separated and identified as trends, periodic and random oscillations
(Jassby and Powell, 1990; Ware and Thomson, 2000). The motivation for exploratory
methods of data analysis in climate comes from the need to separate the climate “signal”
from the background climate variability or “noise”. This decomposition of the data is
done with the hope of identifying the physical processes responsible for the generation of
the signal (Emery and Thomson, 1997). A fundamental characteristic of the statistical
methods for signal detection is their ability to represent spatially distributed data in a
compressed way such that the physical processes behind the data, or their effects, can
best be visualized (Venegas, 2001). As summarized by Emery and Thomson (1997) and

Venegas (2001), signal detection in climate is useful to achieve four main goals in
climate research:

1. to recognize the patterns of natural climate variability and distinguish them
from presumed anthropogenic or other external effects,

2. to use the physical mechanisms inferred from the detection signals to construct
numerical climate models,

3. to validate numerical climate models by comparing the fundamental
characteristics of the modeled data with those of the observed data, and

4. to use the signals themselves to forecast the behavior of the system in the
future.
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The complicated behavior and the non-linear character of the climate system
provide a real challenge to the exploratory data analysis methods (IPCC, 2001a). Climate
variations on different time scales, for example, may be connected with one another by
nonlinear mechanisms. Some episodic phenomena, such as the periodic seasonal changes
in surface temperatures, are better suited to be analyzed in the frequency domain. For
certain phenomena it is not clear whether an oscillatory or episodic picture is most
appropriate. Also, a number of signals, such as ENSO, exhibit a mixture of time-domain
or “event” characteristics and frequency-domain or “oscillatory” characteristics (Emery
and Thomson, 1997). Such quasi-oscillatory signals are characterized by a dominant
timescale of variation, and are often combined with frequency modulation and episodic
large-amplitude events. The choice of the appropriate analysis method is of extreme
importance when the objective is to search for specific signals in time, space, or time and
space combined, within large multivariate data sets (Venegas, 2001).

It is usual in climate studies to be presented with a large data set consisting of
time series over a grid of stations which we wish to compress into a smaller number of
independent pieces of information. Typically it is necessary to deal with an ensemble of
instantaneous samples (maps) of geophysical fields (for example, surface temperature)
defined at a number of points (stations). In such cases, the data are in the form of
simultaneous time series records from a grid on a horizontal plane: x;(?), y:(t). The grid
points may be regularly spaced (such as model-generated data or grid observation) or
irregularly spaced (such as locations of meteorological stations). Analyses of data sets
with the described characteristics, that is, consisting of a number of spatially distributed
time series are known as multivariate statistical procedure. The method of Empirical
Orthogonal Functions (EOFs) is a particularly useful technique for compressing the
variability in this type of data sets and is most widely applied to the problem of spatio-
temporal signal detection in climatic data sets (Lagerloef and Bernstein, 1988;
Preisendorfer, 1988; Emery and Thomson, 1997). This method is also known as
Principal Component Analysis (PCA). The EOF procedure is equivalent to a data
reduction method widely used in the social sciences known as factor analysis. An
advantage of EOF analysis is that it provides a compact description of the spatial and
temporal variability of data series in terms of orthogonal functions, or statistical modes.

In this study, the EOF analysis as well as other multivariate statistical techniques
were applied. The primary objective is to identify the dominant spatio-temporal patterns
of surface air temperature in Thailand, which the time evolution of their leading modes
can further be investigated :

1. interannual and multi-decadal variability as well as long-term trends,

2. its relation to the ENSO and anthropogenic-induced climate changes and the
possible linking mechanisms, and

3. its possible biophysical and socio-economic impacts.

The paper is organized as follows. An analytical method and data sources are
outlined in the next section. Also reviewed in this section will be the basic concepts of
EOF analysis and EOF computation using the scatter matrix method. Physical
interpretation of EOF analysis and temporal structures of the EOF1 coefficient series and
their relations to large-scale climate signals are presented in section 3. The final section
goes on discussing advantage/disadvantage of analytical technique, possible
causes/effects of surface air temperature changes, and implication for future research.
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2. Analytical methods and data sources
2.1. Basic concepts of EOF analysis

EOFs as used by meteorologists and oceanographers are a statistical technique for
analysis of the spatial or temporal variability of physical fields. For example, a situation
benefiting from such analysis occurs when a succession of snapshots of the surface
temperature field over any given region of the globe is made at monthly times during ten
years or longer. When these snapshots are viewed in rapid succession, it becomes
apparent to the eye where the areas of great variability of surface temperature are. In
order to succinctly represent and think about such complex variations, scientists in both
meteorology and oceanography have learned over recent decades to use and develop the
concept of EOF analysis, a tool arising originally in biology and psychometey, to resolve
the complex variance patterns of physical fields. Thus, EOF analysis is simply a method
for portioning the variance of a spatially distributed group of concurrent time series. Its
goal is to replace the spatial and temporal variability of original data series by a smaller
number of new variables, linear combination of the original variables, that capture most
of the total original variance but are uncorrected with each other (Davis, 1976; Lagerloef
and Bernstein, 1988; Preisendorfer, 1988; Dunteman, 1989; Jassby and Powell, 1990;
Emery and Thomson, 1997). The new variables are called orthogonal functions and are
arranged in descending order according to the amount of the original variance they
reproduce. Usually, most of the variance of a spatially distributed series is in the first few
orthogonal functions whose patterns may then be linked to possible dynamical
mechanisms. The theory behind EOF computation is straightforward (see, for example,
Preisendorfer, 1988, Dunteman, 1989; Emery and Thomson, 1997 for a particularly
compact and lucid description). There are two approaches for computing EOFs for a
number of time series. The first constructs the covariance matrix of the data series and
then decomposes it into eigenvalues and eigenvectors. The second uses the Singular
Value Decomposition (SVD) of the data matrix to obtain all the components of the EOFs
(eigenvalues, eigenvectors, and time-dependent amplitudes) without computation of the
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covariance matrix. The EOFs determined by the two methods are identical. The
differences are mainly the greater degree of sophistication, computational speed, and
computational stability of the SVD approach. Only the EOF computation using the
scatter matrix will be described below. Details of the SVD method can be found in
Preisendorfer (1988) and Emery and Thomson (1997). Note that the readers who are
unfamiliar with matrix algebra and eigenvalue-eigenvector problems should review their
basic concepts which can be found in many basic mathematical textbooks.

The algebratic essentials of EOF analysis can be described as follows. Let z(z,x) be
surface temperature or other climatic variables at point x in any given area of the globe at
time ¢. Suppose this measurement be taken over the set of locations x = /,..., p at times ¢
= 1,..., n. Thus the snapshots referred to above are collections {z(z,x) - x = I,..., p} of
reading z(z,x) taken at each of the n times ¢, and are centered on their time averages. It
can be thought these collection as p x 1 (i.e., column) vectors z(?) = [z(t,1), ..., z(t,p)]"
forming a swarm of points about the origin of a p-dimensional euclidian space E,. The
symbol “T” denotes the transpose operation. These collections can also be placed into an
n X p matrix:

Location =
Z](],]) Coe . Z](],p) \L (1)
7 = . e . Time
zZp(n,1) . Zp(n,p)

The first step in the EOF analysis of Z is to center the values z(#,x) on their averages over
the 7 index. Thus, for each x = /,..., p, t-centered values can be written:

z(x) =r]l—Zz(t,x) (2)

t=I
and form the anomalies or departure from the record mean
z'(t,x) =z(t,x) —z(x). 3)
This procedure ensures that analysis is not dominated by the variance from any given
locations (all locations are given a relatively uniform distribution of variance over the
different spatial locations). Using these z-centered values z (7,x), a new n x p matrix Z’

can be formed in the manner of (1) :

Locaion —
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z4(11) . z(Lp) @)

Time

Z/

zhMm,1) Coe z’w(n,p)

Data matrix Z’is now used to derive the spatial covariance matrix Rz of the field z 1z,x)
by multiplying matrix transpose of Z” (Z”) by its matrix Z’ :

Ry = z" # z
)
Expending the product of matrices :
z4hzh) (€hzh) .. z4z%)
Rzz = (6)
@hwzh)  (Zhzh) (Z'nz'n)

where (z’z) is the covariance between time series z; and z; (z” at locations 7 and j)
defined as :

<zgz}>=<z}z;>=i—tn§zg(z)z;(t), (7)

where i, j = 1,..., p. The matrix product Rz, is symmetric and square, even if Z” itself is
not square. A dimension of Rz is p x p. It should be noted that some authors define the
data matrix Z” as the transpose of that defined in equation (4), that is, with n columns
corresponding to time steps and p rows corresponding to locations. In such case, the
determination of the spatial covariance matrix should be done as

Rz =Z’*Z'T. (8)
The rest of the procedure, however, is identical to what is described here.
Once the covariance matrix has been calculated from the data, the EOF analysis can

be done by solving eigenvalue-eigenvector problems which Rz, is decomposed into
matrices L and E:

Ryy * E=FE=*L or
(RZZ/ - L) * F=0. (9)

L is the p x p diagonal matrix containing eigenvalues A, (k = 1, ..., p) of Rz and the
off-diagonal elements of Ry, are all zero:
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L= |- A (10)

The square matrix £ also has dimension p x p. Its column vectors e, (k = 1,..., p) are the
eigenvectors of Rz corresponding to eigenvalues Ay:

er(l) exl) .. eyl
P (11)
eilp) exp) . e
y ¢ ¢ |
e e, e, — Eigenvector e,

The equation in (9) governs the required direction e, of extremal scatter. Non-trivial
solutions (i.e., e; # 0) of this set of p linear algebraic equations for the components of ey
=lex(1), . . ., ex(p)]" occur only for special values of A. In theory of linear algebra, it is
shown (Wilkinson, 1965; Franklin, 1968) that a symmetric matrix such as Rz in (6)
generally has p eigenvectors e; = [ex(1), ..., ex(p)]" in E, and p associated real, non-
negative eigenvalues A; such that

Rzze * e = A * ep kK = 1 .. )22
(12)

The eigenvalue-eigenvector problems in (9) correspond to the series of linear system
equations:

[(zhz1)-AiJer + zhz)ex +, ..., z1z%)ep, =0

zhz1) e + [(zhzh) -A2] ex + ,..,(z0hz))e, =0

(13)

zhz't)er+ (zhzh)er+ . [(zWz)-Aple, =0.
Since the data matrix Z” is real, the covariance matrix Rz, is positive definite, which
means that all its eigenvalues are greater or equal to zero. Each non-zero eigenvalue Ay
in matrix L is associated with a column eigenvector e; in matrix E. The eigenvector

matrix £ has the property that

E+E'=E"+E=1, (14)
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where I, is the p x p identity matrix with ones in the principal diagonal and zeroes
elsewhere. E # E' = E" »E = I, simply indicates that the cross products of any two
eigenvectors are 0 and the sum of squares of the elements for a given eigenvector are
equal to 1. This means that eigenvectors are uncorrected over space, that is, they are
orthogonal to one another. Each eigenvector E; represents the spatial EOF pattern of
mode £ (it has dimension p, that is, the number of locations in the original data).

From matrix e, time-dependent amplitudes, a,(?), of the data set can be derived by

projecting the original data series z{#x) onto eigenvector e, and summing over all
locations p :

J
ap(t) =2z'(t,x)ep(x), (15)

x =1

where x = 1,..., p counts the location, ¢ = 1,..., n counts the time steps and k= /,..., p
counts the EOF modes. These a,(z), thought of as time series { ax(z) - t = 1,..., n}, have
the important property of temporal uncorrelatedness, and they carry information about
the variance of the data set along the direction e,. In matrix notation, matrix 4 which has
dimension # x p is obtained by multiplying matrices Z”and E:

A=7"+E (16)

Just as the spatial patterns Ej are orthogonal in space, the a,(?) are orthogonal in time.
This means that the time-averaged covariance of the amplitudes satisfies

aj(t)aj(t)=2;6; (uncorrected time variability),  (17)
Lj=1,..p
where 0j; is the Kronecker delta :
oy =l 7 (18)

ij J#i.

The overbar in (17) denotes the time-averaged value and

h=ay(1)7 =2 Y fay(1,)°] (19)

j=1
is the variance in each EOF mode. The matrix version of this is

AT *4 = L.
(20)

The eigenvalues in L are usually sorted in decreasing order according to its
corresponding eigenvector, so that A;> A, > ... 4,. Each eigenvalues A is proportional
to the percentage of the variance of the original data that is accounted for by mode «.
This percentage is calculated as :

A
% variance mode k =—%—%* 100 (21)

Zf:z A
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The first mode contains the highest percentage of total variance, A, ; of the remaining
variance, the greatest percentage is in the second mode, A, and so on. Since EOF modes
and their time-dependent amplitudes are uncorrected over time and space, each one
makes an independent contribution to accounting for the variance of the original data set.
If we add up the total variance in all the time series, we get

p /] 5 P
Z<—Z[Zx(t)] =k§7ﬁk (22)

x=1 "¢ =]

Sum of variances in original data = sum of variances in eigenvalues.
Finally and most important, the original centered data set can be totally represented in
the form:

P
z'(t,x)zZaj(t)ej(x) (23)
j=I
t=1,..n;x=1,...,p.
In matrix notation :

A =A *ET,
(24)

As noted above, if the eigenvalues are ordered by size (that is, by fraction of the
variance explained by the corresponding eigenvector), it is usually found that only the
first few empirical modes account for a very fraction of the variance. The reconstruction
of an approximate, compressed and less noisy version z”’ (¢,x) of the original z {#,x), using
only the first few modes (k) with & << p, can be represented meaningful physical
processes, which are associated with fundamental characteristic spatial and temporal
variability in a very large data set. This leads to a significant reduction of the amount of
data while retaining most of the variance of variables. In addition, the synthetic version
z’ (tx) can produce a lower total mean-square error, because sum of variances in
eigenvalues (right term in (22))is close to sum of variances in original data (left term in
the (22)).

2.2. Data sources

A set of surface weather observations for a 53-year period (1951-2003) collected at
34 stations in Thailand (Table 1) forms the basis for the EOF analysis. The data set
obtained from the Meteorological Department of Thailand consists of monthly averaged
mean, maximum, minimum temperatures (Tpean, Tmax, Imin), and monthly averaged
mean dewpoint temperature (7 4,) which are all derived from daily observations. The 34
site records used here were chosen on the basis of record length and completeness, the
requirement that there were no significant effects from station relocation during the
period, and to provide a reasonable spatial coverage over much of Thailand. Monthly
averaged mean, maximum and minimum apparent temperatures (7amean, I amaxs Tamin)s
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which combine temperature and humidity effects on the human body, were further
calculated by using Steadman’s (1984) regression equation

Ty =-1.3+0.92%t +2.2%, (25)

where T 18 Tumeans Tamaxs OF Tamin, 18 Tmeans Tmax OF Tin and e is water-vapor pressure
(kilopascals). The effects of wind and radiation are ignored in this equation, and e were
calculated from T, as:

(26)

17.27T
e =0.6108 exp {ém}

T oy +237.3
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Table 1. Listing of weather stations used in this analysis. Asterisks indicate stations which data are available from 1952 to 2003.

Station Station Code Province Location (latitude; N, longitude; E)
number

1 303201 CHIANG RAI 19° 55", 99° 50’

327501 CHIANG MAI 18°47",98° 59’
3 330201 PHARE* 18° 10', 100° 10’
4 331201 NAN 18°47', 100° 47’
5 351201 UTTARADIT 17°37', 100° 06’
6 376202 MAE SOT 16°40', 98° 33’
7 378201 PHITSANULOK 16°47', 100° 16’
8 379201 PHETCHABUN* 16°26', 101° 09’
9 354201 UDON THANI 17° 23", 102° 48’
10 356201 SAKON NAKHON* 17°09', 104° 08
11 357201 NAKHON PRANOM* 17°25', 104° 47
12 381201 KHON KAEN 16°26', 102° 50’
13 383201 MUKDAHAN 16° 32", 104° 45’
14 405201 ROIET 16° 03, 103° 41’
15 407501 UBON RATCHATHANI 15°15', 104° 52’
16 431201 NAKON RATCHASIMA 14° 58', 102° 05’
17 432201 SURIN 14° 53', 103° 30
18 400201 NAKON SAWAN 15°48', 100° 10’
19 425201 SUPHAN BURI* 14°28', 100° 08’
20 426201 LOP BURI 14°48', 100° 37’
21 450201 KANCHANA BURI 14°01', 99° 32’
22 455201 BANGKOK METROPOLIS 13°44', 100° 34’
23 455601 DON MUANG AIRPORT 13°55', 100° 36
24 440201 ARANYA PRATHET 13°42', 102° 35’
25 459204 SATTATHIP 12°41’, 101° 01’
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Table 1. (continued)

Station Station Code Province Location (latitude; N, longitude; E)

number
26 480201 CHANTHA BURI 12°37",102° 07’
27 500201 PRACHUAP KHIRIKHAN 11° 50", 99° 50’
28 517201 CHUMPHON 10°29",99° 11’
29 552201 NAKONSI THAMMARAT 8°28",99° 58’
30 532201 RANONG 9° 59" ,98° 37
31 564201 PHUKET 7°58",98° 16
32 567201 TRANG AIRPORT 7°31",99° 32
33 568501 SONGKHLA 7°12",100° 36’
34 583201 NARATHIWAT 6° 25", 100° 49’
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A relatively stable network of stations and consistency in operational procedures
ensure that the quality of surface weather observations in Thailand, for climate studies, is
somewhat good (Ouprasitwong, 2002; Brikshavana and Ouprasitwong, 2002). However,
the obtained data set was subject to further quality control procedures. Two types of
erroneous data were identified. The first was an abrupt shift in mean values, associated
with station relocations. According to station history information, there were five
stations (CHIANG RAI, KHON KAEN, BANGKOK METROPOLIS, SURAT THANI
and NAKHONSI THAMMARAT) that locations were changed during 1990-2000
(Ouprasitwong, 2002). Ouprasitwong (2002) used Multiple Analysis of Series for
Homogenization (MASH) to examine homogeneity of rainfall data, and found that
inhomegeneity of rainfall data at stations BANGKOK METROPOLIS and NAKHONSI
THAMMARAT coincided with the years of station relocations. The MASH program can,
however, provide the reliable results only for rainfall data (Ouprasitwong, 2002). Thus,
the non-parametric Mann-Whitney statistic (Uy) for testing that two samples (x;, x2, ...,
xp) and (Xp+7, Xp+2, ..., Xp+n) come from the same population is alternatively suitable for
examining the occurrence of an abrupt change in other climatic variables (Petitt, 1979;
Demaree and Nicolis, 1990). An analysis can be done by partitioning the series into two
sub-period, before and after site moves, and calculated Uy, from:

where M, is the rank of the ith observation when the values x;, x,, ..., x» in the series are
arranged in ascending order. The results of two-sided Mann-Whitney test indicate that

k
Uy =2 > M; -k(N+1) (27)

i=1
(Table 2) only temperature value at station BANGKOK METROPOLIS was
significantly different between before and after station relocation, and this data record
was then excluded for the EOF analysis. Moreover, the remaining station records were
visually inspected for any abrupt shift, but there was no evidence for such changes. The
geographical distribution of 33 selected weather stations is shown in Fig. 1. The second
type of erroneous data involved outlier data that may have been introduced either due to
data-entry, data observing or transmitting procedure biases were identified and excluded
according to statistical criteria. An objective approach eliminated apparent statistical
outliers, which exceeded specified acceptable range, was arbitrarily set 3 standard
deviation from monthly mean (mean + 3SD) (Limsakul et al., 2001). Any existing errors,
which could not be detected by the statistical methods were usually random and
equivalent to “noise”.

From 1951 to 2003, each of the station records is, on average, 98% complete, and the
overall dataset has only 1.7% missing values. There were missing data in some years and
months particularly during 1951-1955 when more data are missing (Fig. 2). However,
small amounts of random missing data should not introduce significant biases in
temporal trends, since data used to the EOF analysis consist of many stations. To further
prevent missing data from introducing any bias, monthly climatological means
calculated from entire record were used for missing values.

2.3. EOF computation using the scatter matrix method

24



Details of the covariance matrix approach can be found in Preisendorfer (1988) and
Emery and Thomson (1997). This recipe, which is only one of several possible
procedures that can be applied, involves the preparation of the data and the solution of
equation (9) as follows:

1.

(98]

5.

Construct the n x p matrix Z in equation (1), by organizing the n rows (times) and
p columns (locations) of the original data. In case of surface air temperature data
used here that were collected at 33 stations and from 1951 through 2003 (53-year
period), n = 1, ..., 636 (53 years x 12 months) and p = [, ..., 33. Care should be
taken to ensure that the start and end times for all p time series of length n are
identical.

. Compute the climatological monthly means using equation (2) and subtract them

from original data, z(z,x), in the equation (3). The new n x p matrix Z' can be
formed in the manner of equation (1), but consists of the anomalies or departure
from climatological monthly means (4). Note that the anomalies of all missing
values are equal to 0, since climatological monthly means are used for those
missing data.

. Construct the spatial covariance matrix R,,- by using equations (5), (6) and (7).
4.

Solve eigenvalue-eigenvector problems which R..- is decomposed into eigenvalues
and eigenvectors in the equations (9), (10) and (11).

Compute time-dependent amplitude, a(?), by projecting the original data series
onto eigenvector in equation (15).

6. Calculate the percentages of the variance explained by each mode, using equation

@1).

25



Table 2. Results of the two-sided Mann-Whitney test for monthly averaged mean temperature before and after site moves for 4 stations.

Station Period before/after site N Median Uk p-value
move (°O)
CHIANG RAI 1951-1991 492 25.6 -0.10 0.92
1992-2003 143 25.6
KHON KAEN 1951-1997 564 27.4 -0.95 0.34
1998-2003 72 27.2
BANGKOK METROPOLIS 1951-1993 515 27.9 -7.63 <0.001
1993-2003 120 29.0
NAKHONSI THAMMARAT 1951-1997 501 27.4 -0.73 0.47
1998-2003 72 27.4

N —number of observations; Uk — Mann-Whitney statistic
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Fig. 1. Geographical distribution of 33 selected weather stations used in this study. The
atmospheric variables used to analysis are monthly averaged mean, maximum and
minimum temperatures and dewpoint temperature collected from 1951 to 2003.
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3. Results
3.1. Physical interpretation of EOF analysis

An EOF analysis generates three types of output. First the eigenvalues together
with the percentage of the total variance of each EOF mode are given. In the EOFs these
equal the variance accounted by each mode. Also provided are the eigenvectors for each
EOF mode. Each eigenvector is composed of values called the component loadings for
that mode. These loadings are usually presented as correlation coefficients between each
time series and the associated time-dependent amplitudes, and may be considered a
measure of the relative importance of each time series in the extracted EOF mode. The
sum of the squared correlations for each EOF mode equals the associated eigenvalue. If,
for example, surface air temperatures at stations 1, 2 and 3 have high positive loadings
on the leading EOF mode and that at station 4 has a high negative loading, this means
that the largest proportion of the variance in the original data can be accounted for by
the trends in these four stations. The different signs indicate that surface air temperature
at station 4 has high values in a certain set of time steps, whereas surface air
temperatures at stations 1, 2 and 3 have high values in a completely different set of time
steps. The third set of results is a matrix of time-dependent amplitudes or component
scores. These series describe the evolution of the EOF’s with time. One set of time-
dependent amplitudes is provided for each of EOF mode, and each time-dependent
amplitude corresponds to one time step. This is computed by simply multiplying the
component loadings by the original data.

According to Peixoto and Oort (1992), one way to understand the basic idea
behind EOFs is to imagine that each of the n time series as a vector f, in the p-
dimensional space, such that :

Jn ={fnts fn2s oo fup} attime t=n.

Each vector £, includes the values of field f'at all location x = /, ..., p for a given time n.
Each of n data vectors is directed from origin to a point in the p space (Fig. 3). If there
exists some correlation between the n vectors, we expect that their extremities will be
organized in cluster or along some preferred directions. The problem we want to solve
with the EOF decomposition is to find an orthogonal basis {e;, e, ..., e,} in the p-
dimensional space, instead of the original basis, such that vector e; best represents the
largest cluster of the original data vectors, e, best represents the second largest cluster of
the original data vectors, and so on. In other words, e; accounts for the largest portion of
the data variance, e, for the second largest portion, and so on (Fig. 3). This is
equivalent to find a set of p vector e, whose orientation is such that the sum of the
squares of the projections of all the n observation vectors f,, onto each e, is maximized
sequentially. The vectors e, , x = I, ..., p are mutually orthogonal and they are what we
called the EOFs. If all possible EOF modes are used, then they define a space which has
the same dimension as the original variable space and, hence, completely account for the
variance in the original data. However, there is no advantage in retaining all of the EOF
modes since there would have as many EOF modes as original variable and, thus, would
not have simplified matters.

The first step is to decide on how many EOF modes are needed to adequately

describe the dominant spatio-temporal characteristics of surface air temperatures,
dewpoint temperature and apparent temperatures in Thailand. The scree plot proposed
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Fig. 3. Example of a possible configuration of the data vectors f,, (n =I... N denote the
time steps) and the empirical orthogonal vectors e,,, m = I...M. From Peixoto and Oort
(1992).
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by Cattell (1966) is one of the good rules of thumb, providing a means of assessing how
many EOF modes to retain. It is constructed by simply plotting either eigenvalues or
percentage of the total variance of each EOF mode in descending order to produce a line
graph. Since the leading EOF mode has the largest eigenvalue or the largest percentage
of the total variance, and the following ones are in descending value, this produces a line
graph that slopes down to the right. By looking for the point where a pronounced change
in the slope occurs, how many EOF modes to retain can thus be decided. It should be
noted that this criterion is somewhat arbitrary, and how many and which EOF modes to
retain depend, in part, upon the goals of the analysis.

The scree plots for individual and cumulative percentages of the total variance of
monthly averaged mean, maximum and minimum temperatures (Tyean, Tmaxs Tmin),
monthly averaged mean dewpoint temperature (74, ) and monthly averaged mean,
maximum and minimum apparent temperatures (Zamean, Lamax, Tamin) are presented in
Figs. 4, 5 and 6. What stands out from Figs 4, 5 and 6 is that steep slopes are evident
from the first to the second EOF modes and the remaining EOF modes can be fitted
fairly well by a straight line of negligible slope. The EOF1 mode of all seven
temperature variables accounts for substantial amount of the total variance ranging from
61.2% to 71.3%, whereas the remaining modes explain considerably less. These patterns
of scree plots indicate that only the first mode is physically meaningful in determining
the dominant mode of variability, and higher order modes are potentially mixed and
non-interpretable due largely to climatic noise associated with high-frequency variability
in the climate system. Consequently, by using Cattell’s scree criterion, only the EOF1
mode was retained to describe spatio-temporal characteristics of all temperature
variables.

The loadings on the EOF1 mode of all seven temperature variables are graphically
illustrated in Figs. 7-13. A visual examination reveals that the EOF1 mode of each
temperature variable has positive correlations with all stations, and correlation
coefficients are relatively high and are about the same magnitude, excepting for a few
stations in the south. High (r >0.5) and low (r <0.5) loadings on the leading modes range
from 75% to 90% and from 10% to 25%, respectively. These loading patterns strongly
indicate that temperature data at all stations in Thailand are highly intercorrelated and
nearly equally important in defining the EOF1 mode. Thus, it can be appropriately
viewed that the EOF1 mode is a robust representative of the dominant spatio-temporal
structures of Trweans Tmaxs Tmins Tdews Lameans Tamax A0d. Tamin in Thailand.

Time evolution of the leading mode of all seven temperature variables is shown in
the time series of their coefficients (Figs. 14, 15 and 16). Note that units are arbitrary,
because of EOF calculation based on covariance matrix. As can be seen, all series
exhibit irregular oscillations, due to a mixture of several signals of variability contained
in the time series. As indicated by the integral timescales, all series form complex long-
term patterns and are rather noisy, which month-to-month variations are prominent,
superimposed on much lower-frequency variations with timescales of a few years or
longer. Some underlying periodic oscillations and trends also seem to be present in the
time series. A visual inspection further reveals that two series of T, and Tamin do
appear to contain the dominant long-term trends. However, inferences about the
dominant temporal characteristics of the leading modes from unsmoothed series are
relatively obfuscating, due to the presence of various scales of motion in time series. In
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order to gain insight on the particular signals blended together and hidden inside a noisy
time
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Fig. 4. Scree plot for EOF analysis of monthly averaged mean, maximum, minimum
temperatures (Tmean> Tmaxs Imin) collected during 1951-2003 and at 33 stations in
Thailand.
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Fig. 5. Scree plot for EOF analysis of monthly averaged mean dewpoint temperature
(T gew) collected during 1951-2003 and at 30 stations in Thailand.
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Fig. 6. Scree plot for EOF analysis of monthly averaged mean, maximum and minimum
apparent temperatures (744, Tamax, Tamin) calculated by using surface air temperature and
dewpoint temperature collected during 1951-2003 and at 29 stations in Thailand.
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Fig. 7. Loadings on the EOF1 mode of monthly averaged mean temperature. The
loadings are correlation coefficients between each time series and the first time-
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Fig. 8. Loadings on the EOF1 mode of monthly averaged maximum temperature. The
loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation
coefficients.
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Fig. 9. Loadings on the EOF1 mode of monthly averaged minimum temperature. The
loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation
coefficients.
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Fig. 10. Loadings on the EOF1 mode of monthly averaged dewpoint temperature. The
loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation
coefficients.
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Fig. 11. Loadings on the EOF1 mode of monthly averaged mean apparent temperature.
The loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation
coefficients.
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Fig. 12. Loadings on the EOFl mode of monthly averaged maximum apparent
temperature. The loadings are correlation coefficients between each time series and the
first time-dependent amplitudes. The sizes of blue cycles are proportional to correlation
coefficients.
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Fig. 13. Loadings on the EOF1 mode of monthly averaged minimum apparent
temperature. The loadings are correlation coefficients between each time series and the
first time-dependent amplitudes. The sizes of blue cycles are proportional to correlation
coefficients.
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Fig. 14. Coefficient time series of the EOF1 mode. Units are relative.
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Fig. 15. Same as in Fig. 14.
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Fig. 16. Same as in Fig. 14.
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series, undesired scales of variability must first be removed. The interesting signals can
then be examined in isolation without the complications of the other features. The trend
and other components can be separated by a smoothing technique (Chatfield, 1989;
Jassby and Powell, 1990; Emery and Thomson, 1997). Smoothing always involves some
form of local averaging of data such that the nonsystematic components of individual
observations cancel each other out. The most common method is moving average
smoothing which replaces each element of the series by simple average of n adjacent
element, where 7 is the width of smoothing window (Chatfield, 1989; Jassby and Powell,
1990; Emery and Thomson, 1997; Eskridge et al., 1997). By modifying the window size,
the filtering of different scales of motion can be controlled.

To further investigate and compare the standing temporal evolution of the
leading mode with the well-known modes of global climate variability, each unfiltered
series was decomposed into interannual (1-5 years) and decadal (longer than 5 years)
timescales. The two different timescales were chosen on the basis that the separated
interannual variability corresponds to the ENSO cycles, while decadal fluctuations
represent long-term behavior of variables. Decomposition of the coefficient time series
can be done by first applying a centered 60-term moving average. The resulting filtered
series represent long-term variations. Interannual variability was subsequently estimated
by subtracting the smoothed from the original series, forming the residual series. A
centered 10-term moving average was then employed to the residual series to eliminate
the variability less than ten months.

3.2. Temporal variability of EOFI1 coefficients series and its relation to ENSO
signature

3.2.1. Fundamental mechanisms of ENSO and the commonly used indices

The term El Nifio is widely used to refer to a phenomenon associated with the
unusually warm water that occasionally forms across much of the tropical eastern and
central Pacific (Fig. 17). The time between successive El Nifio events is irregular but
they typically tend to recur every 2 to 7 years (e.g., Horel and Wallace, 1981; Philander,
1990; Trenberth, 1984, 1997; McPhaden, 1999). A La Nifia is the counterpart to an El
Niio and is characterized by cooler than normal Sea Surface Temperatures (SSTs)
across much of the equatorial eastern and central Pacific (Fig. 18). A La Nifia event
often, but not always, follows an El Nifio and vice versa. Once developed, both El Nifio
and La Nifia events tend to last for roughly a year although occasionally they may
persist for 18 months or more. El Nifio and La Nifa are both a normal part of the earth’s
climate and there is recorded evidence for their occurrence for hundreds of years
(Trenberth, 1997; Gill and Rasmusson, 1983; Gu and Philander, 1995; Huber and
Caballero, 2003; Fedorov and Philander, 2000).

Although El Nifio and La Nifia events are characterized by warmer or cooler

than average SSTs in the tropical Pacific, they are also associated with changes in
patterns of wind, pressure, rainfall, air temperature and total cloudiness fraction of the
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sky (Horel and Wallace, 1981; Philander, 1983, 1990; McPhaden, 1999). Schematic
views of the links between SSTs and other atmospheric components are illustrated in
Fig. 19. In normal conditions, the trade winds blow towards the west across the tropical
Pacific. These winds pile up warm surface water in the western Pacific, so that the sea
surface is about 0.5 meter higher at Indonesia than at Ecuador. The SST is about 8 °C
higher in the west, with cool temperature off South America, due to an upwelling of
cold water from deeper levels (Fig. 19a). Rainfall is found in rising air over the warmest
water, and the east Pacific is relatively dry (Fig. 19a). During El Nifio events, the trade
winds relax in the central and western Pacific leading to strong countercurrent which
carries warm water across the equatorial region, and a depression of the thermocline in
the eastern Pacific and an elevation of the thermocline in the west (Fig. 19b). This
reduces the efficiency of upwelling to cool the surface, resulting in a dramatic rise in
SST off South America (Fig. 19b). Rainfall follows the warm water eastward, with
associated flooding in Peru and drought in Indonesia and Australia (Fig. 19b). The
eastward displacement of the atmospheric heat source overlying the warmest water
results in large changes in the global atmospheric circulation, which in turn force
changes in weather in remote regions far from the tropical Pacific (Troup, 1965; Horel
and Wallace, 1981; Wallace and Gutzler, 1981). While, La Nifia conditions could be
thought of as an enhancement of normal condition. During these events the trade winds
strengthen, colder than average ocean water extends westward to the central Pacific, and
the warmer than average SSTs in the western Pacific are accompanied by heavier than
usual rainfall (Fig. 19¢).

While the tropical ocean affects the atmosphere above it, so too does the
atmosphere influence the ocean below it. In fact, the interaction of the atmosphere and
ocean is an essential part of El Nifio and La Nina events (the term coupled system is
often used to describe the mutual interaction between the ocean and atmosphere).
During an El Nifio, sea level pressure tends to be lower in the eastern Pacific and higher
in the western Pacific, while the opposite tends to occur during a La Nifia. This see-saw
in atmospheric pressure between the eastern and western tropical Pacific is called the
Southern Oscillation (SO). The main centers of action of the SO are situated around
Darwin (12.4 °S 130.9 °E) in the northern Australia and Tahiti (17.5 °S 149.6 °W) in the
South Pacific (Fig. 20). Therefore, the difference in sea level pressures between the
points has been long used as a standard measure of the SO (Troup, 1965). Since El Nifio
and the Southern Oscillation are related, the two terms are often combined into single
phrase the El Nifio-Southern Oscillation, or ENSO (Troup, 1965; Trenberth, 1984,
1997).

Several indices have been used to monitor ENSO. They have conventionally
been calculated based only on sea level pressures at a combination of a few stations
situated primarily near the main center of action of ENSO. These usually only involve
those at Darwin and Tabhiti (Troup, 1965; Trenberth, 1984, 1997; Ropelewski and Jones,
1987; Kiladis and van Loon, 1988). A drawback of this index is that it is based on the
pressures at two points and therefore can easily be affected by local weather
disturbances, making it somewhat “noisy” when viewed on a month-to-month basis. In
recent decades, the indices based on SSTs have come into common usage because
satellite and an observing network of buoys in the equatorial Pacific now allow for
collection real time, high quality data. Indices based on SSTs (or, more often, its
departure from long-term average) are those obtained by simply taking the average
value over some specified region of the ocean (Wang, 1995; Trenberth and Hoar, 1996;
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Trenberth, 1997). There are several regions of the tropical Pacific Ocean that have been
highlighted as being important for monitoring and identifying El Nifio and La Nifia. The
most common ones are illustrated in Fig. 21. For widespread global climate variability,
NINO3.4 is generally preferred, because the SST variability in this region has the
strongest effect on shifting rainfall in the western Pacific. This in turn leads to shift the
location of rainfall from the western to central Pacific which modifies greatly where the
location of the heating that drives the majority of the global atmospheric circulation.
Newly generated version of index is the Multivariate ENSO Index (MEI) calculated as
the first unrotated Principal Component of all six observed variables over the tropical
Pacific (Wolter and Timlin, 1993, 1998). These six variables are: sea level pressure,
zonal and meridional components of the surface wind, sea surface temperature, surface
air temperature and total cloudiness fraction the sky. The MEI is computed separately
for each of twelve sliding bi-monthly seasons (Dec/Jan, Jan/Fec , ..., Nov/Dec).
Negative values of the MEI represent the cold ENSO phase (La Nifia), while positive
MEI values represent the warm ENSO phase (El Nifio). Since the MEI integrates more
information than other indices, it fully reflects the nature of the coupled ocean-
atmosphere system, and thereby is better for monitoring ENSO phenomenon, including,
for instance, world-wide correlations with surface temperatures and rainfall than the SOI
or SST-based indices (Wolter and Timlin, 1993, 1998). To make the MEI comparable
with the monthly coefficient time series of EOF1 mode of Tiean, Timaxs Tmins Taew> Tameans
Tamax and - Tamin, the MEI values of month (i-1) and month (i) were averaged for the
value of month (i), and the MEI series was then decomposed into interannual and
decadel timescales.

3.2.2. Interannual variability of EOF1 coefficient series and its relationship with
ENSO events

Residual EOF1 coefficient series of all seven temperature variables, after the
fluctuations less than ten months were removed, exhibit a salient mode of interannual
variability (Figs. 22, 23, 24, 25, 26, 27 and 28). All series show strong negative and
positive signs, and the oscillations between maxima and minima with period of about 1-
4 years stand out as reasonably clear signals above the otherwise noisy background of
short term climatic fluctuations. The results from variance analysis reveal that
variability on interannual timescale for all seven temperature variables ranges from 17.6
to 25.8 % of the total variance (Table 3). A closer examination of the data indicates that
interannual variability of all but 7, accounts for the second source of the total variance
(Table 3). A noteworthy feature emerged from Figs. 22-29 is that the interannual
variability patterns of all seven temperature variables resemble that of MEI, and the
anomalously positive/negative time-varying amplitudes of the EOF1 mode of them
appear to be in phase with the warm/cold phase of ENSO (positive/negative MEI).
There is a clear indication that Tyeans Tmacs Lmins Ldews Tameans Tamax@Nd Tamin in Thailand
tend to warmer (colder) than normal during El Nifio (La Nifia) phase of ENSO. During
the 6 strongest historic El Nifio events, for example, all these variables were
prominently higher than normal (Table 4), while they were anomalously lower than
average during the 8 strongest historic La Nifia events (Table 5). Moreover, the EOF1
coefficient series of all seven temperature variables underwent largest interannual
variability during the recent extreme phase reversals of ENSO, when the 1997-98 El
Nio, by some measures the strongest on record, was followed by the strong 1998 -2000
La Nifia. A nonparametric Spearman rank correlation test provides further evidence that
there were significant positive correlations between each smoothed EOF1 coefficient
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series of surface temperature variables and the 10-term smoothed MEI series, for the 47-
year period (Table 6). It is readily seen that the 10-term smoothed EOF1 coefficient
series of Teans Tmaxs Tamean and Tamay have high correlations with that of the MEI, with
correlation coefficients higher than 0.5 (Table 6). The similar but less pronounced
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Fig. 17. An example of departure of sea surface temperature from the long-term average
for an El Nifio event during December 1991. Yellow shading indicates warmer than
average temperatures. Units are °C and contours are drawn at 0.5 °C intervals. Note that
this picture was obtained from website of International Research Institute for climate
prediction (http://iri.columbia.edu/climate/ENSO).
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Fig. 18. An example of departure of sea surface temperature from the long-term average
for a La Nifia event during December 1998. Blue shading indicates colder than average
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temperatures. Units are °C and contours are drawn at 0.5 °C intervals. Note that this
picture was obtained from website of International Research Institute for climate
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Fig. 19. Schematic views of the links between SSTs and tropical atmospheric variables
in the equatorial Pacific ocean during normal (a), El Nifio (b) and La Nifia conditions (c).
SSTs are shaded: blue-cold and orange-warm. The dark arrows indicate the direction of
air movement in the atmosphere: upward arrows are associated with clouds and rainfall
and downward-pointing arrows are associated with a general lack of rainfall. Note that
this picture was obtained from website of International Research Institute for climate
prediction (http://iri.columbia.edu/climate/ENSO).

Fig. 20. The main centers of action of the Southern Oscillation. Tahiti and Darwin are at
opposite ends of the Southern Oscillation’s seesaw, and so the difference in pressure
between them is used to measure the Southern Oscillation. The figure shows that
pressure variation at Tahiti is as closely related to Darwin as are locations near to
Darwin, but with the opposite sign.  Note that this picture was obtained from website
of International Research Institute for climate prediction
(http://iri.columbia.edu/climate/ENSO).
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Fig. 21. The NINO regions. The thin grey line in the center is the equator. Note that this
picture was obtained from website of International Research Institute for climate
prediction (http://iri.columbia.edu/climate/ENSO).
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Fig. 22. The EOF1 coefficient series of 7T.q, residuals (original series minus 60-term
smoothed series) (a) and 10-term smoothed 7., residuals (b).
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Fig. 23. The EOF1 coefficient series of 7, residuals (original series minus 60-term
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smoothed series) (a) and 10-term smoothed 7., residuals (b).

Fig. 24. The EOF1 coefficient series of T, residuals (original series minus 60-term
smoothed series) (a) and 10-term smoothed 7, residuals (b).
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Fig. 25. The EOF1 coefficient series of 7., residuals (original series minus 60-term
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Fig. 26. The EOF1 coefficient series of Tyeq, residuals (original series minus 60-term
smoothed series) (a) and 10-term smoothed 7eqn residuals (b).
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