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Abstract

This study attempts to investigate the dominant spatio-temporal structure of mean, 
maximum and minimum surface air temperatures (TBmeanB, TBmaxB, TBminB), dewpoint 
temperature (TBdewB)  and computed mean, maximum and minimum apparent temperatures 
(TBameanB, TBamaxB,B BTBaminB) in Thailand. The atmospheric data used in this study are based on 
monthly data collected from 33 stations for period of 1951-2003. Empirical Orthogonal 
Functions (EOF) analysis and other multivariate statistical techniques were used to 
reveal the dominant modes and temporal patterns.  

An analysis indicates that the EOF1 mode of all temperature variables accounts 
for substantial amount of the total variance ranging from 61.2% to 71.3%. The EOF1 
mode of all temperature variables is characterized by a monopole of spatial patterns, 
which correlations coefficients are positive and relatively high and about the same 
magnitude at all stations. Such a unique pattern implies a high intercorrelation and a 
relatively uniform variance distribution of surface air temperatures at all stations. Hence, 
the EOF1 mode is a robust representative of the dominant spatio-temporal structure of 
surface air temperatures in Thailand that probably share a common influence from the 
same origins. 

On the basis of the EOF results, the time variability of the EOF1 mode of all 
temperature variables in Thailand has oscillated at three dominant timescales over the 
last 53 years: interannual/decadal timescales and long-term trends. The El Niño-Southern 
Oscillation (ENSO) cycles are the most prominent timescale of interannual variability in 
surface air temperatures in Thailand. There is a significant indication that all temperature 
variables tend to be higher (lower) than normal during the El Niño (La Niña) years. The 
possible linking pathway between ENSO event and interannual changes in surface air 
temperature in Thailand may be through the “atmospheric teleconnections”, establishing 
by the shifts in the location of the organized rainfall in the tropics and the associated 
latent heat release.  

The EOF1 coefficient series of TBmaxB, TBamaxB, TBminB and TBaminB also exhibit salient 
decadal changes which are significantly related to the low-frequency component of 
ENSO cycles. The overall warming trends of TBmaxB, TBamaxB, TBminB and TBaminB since the late 
1970s have been in phase with the persistent and exceptionally strong warm phase of 
ENSO cycles. Furthermore, the EOF1 coefficient series of TBminB and TBaminB have 
monotonically increased at a faster rate than those of TBmaxB, and TBamaxB since the mid 1950s 
that resemble the greenhouse warming fingerprint observed in instrumental records and 
predicted by some models. At this point, however, it is unclear whether the recent 
changes in TBmaxB, TBamaxB, TBminB and TBaminB are in direct response to greenhouse gas forcing, or 
whether these changes are associated with the natural decadal timescale variation in the 
atmospheric circulation. Another conspicuous feather is that there is a significant 
narrowing for diurnal temperature ranges over most parts of Thailand, resulting from the 
differential changes in maximum and minimum temperatures.

The results from this study provide a vital clue of some key aspects of short-and-
long term climate change in Thailand that has important implications for future 
prediction and environmental management. There is little doubt that climate change is an 
active and critical component of “our Earth System” as current and future threats for 
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human and environmental systems that is now happening even on regional/local scales 
and will likely continue or even intensify in the near future.   



5

���������	�
�����
��

����������	
���
��������	���� ���	�����
������
�����	�	���� !����
�"���� ������#����$�%�&
�
�����	�#
������� (Timescale) 
�����1
���2���������������
	����	�����2�
�&�� 
�2
3�	$�
 palaeo-records
���#92��$	�&�  !����
�"���:�
��
��������	������&���&��	�����#
������� :��� ����;�������:�
��!& ����1����
������	����!�������� !����
�"�	���2� !�� ��  ����������	����#<
 !����
�" $2��&����	�29	�����=��2>���

��������	����� �? !����
�"���:�
�����
��"�
@���$2�
2	��
 �	����$�
�#<
 !�������������=��2>�	
������#�
���
=�
	����	
�����
����
�����	�=����?�9 A�����
���9����:��:�����
2��2B$2
����	�=�������#��������
�1�	���?��	C�� 	�
$�
	�� 
��������	�����#<
 !���2���2��� ��"��� ��������#	����2��������������D�?���&���!�
�&�
	1���� ?��2�� ���:�����1���������	���"	E����� ����$	�#� �?�����������
��������	#@�E 
Intergovernmental Panel on Climate Change (IPCC) �����	%�1�	�N �."  .2001 �&��#<
 !���;�������:�
�	9&��
"����@��� 20 �?������	 0.6±0.2 ��"��A��A��� ����#<
 !���;�������:�
�?������	�!��#��	9&���"���@��� 1990 IPCC 
�2���	�2	�1���&� "�������	
���
���������	 �����������
��������� ��
�!	"��#$���	�	%&��
'����
('���'���	��	� 
&��
)*	+���	������	�'�����,	-
���
��+�� ���
����	��	�"��
��.�
*���/� -��"
#$��#	01�	�2 ���&�����
*������	�
���
�3�"
����%1�������4�	
�	" %�1���
�����
��<E
2	%�1�&� �	�N �."  .2100 �#<
 !���;�������:�
$��!����	
�����< 1.4-5.8 ��"��A��A��� A������	�2���
���?�������!��#��2����&��2����	�#�:�
	�=���X� (Ice Age)P P	�
$�
	���2����

�2
3�	��������"����E����&�9���&� 
��������	��������#<
 !����
�"�	�����2�	���������� (�N�&��NZ���"���@
�&��"���@) �	
��� !�� �����:�
 �9&	 ���������
��
	��-��1 �������A�����������[��
� �2�%�1�2�C�
����
$�
���
B
��<E��	:A& (El Niño-Southern Oscillation; ENSO) 
������	�:	&�-����C2	������������
�"�	A�

:�
��1  A������	���
B
��<ED���9������2�:�
����
��$�

���9����:����
�&��
��������	�������C���
�����
�#<
 !��C��	�=����������<��1	"!	�E�!������
���#����A�[c
 �������C2	������C���
�����������
�"�	A�

:�
��1  Z����1�&�
�2
3�	��������"����E�&�9����&��92��$	Z��
��������	����� �? !����
�"���:�
 
��?��
�<E�
C�
���������$$��
�����	�	�	���$�

��������	�����2�
�&�� �2�������%�&�	&	�	������1�$=�
2��&�	�1����

�	9&�����C&�	�� �	����$�
�2�����!1������1��$��&��Z&����1�Z��
�%

���9����:�� �d$$2� ��	�
����2��2� (Forcings)

������	�� (Responses) ���C��������� (Consequences) ���
��������	����� �? !����
�"���:�
  �2�	2�	 

��"�
@���$2�������
��������	��������#<
 !����
�" :���;?����&������
��������	�����	���2� !�� �� ���	
�����X	����1�������%�1�2������	�$$�
	2
�����"����E���	$=�	�	��
 ����2�����	�2�Z#������E
�2
���
:���
����$2�
��������	�������:�
 (Global Change Research)  �=�
�2������"%�� �����X	�2�
�&���2�%�&�&��
%�1�2������	�$�����
��"�
@���
	2
 ����2��%�&��
�2
3�	����	&92����
��������	�����#<
 !����
�"�2������
�2�	���������� ����$	
���������$$��
�����	

�2�	2�	 
��"�
@�	�����2�Z#������E
�2
 �?���"�
@� 1) �!��������������	�	�9��?��	�������9�����������
�2
@<�:����&	����#<
 !����
�"�	�����"%�� 2) 
�%

���9����:���2���	�����2�	������������
�&������
������	�2�
�&��
2�?j��
����������������	���D���9������� �? !����
�"���:�
 
�������C2	���
���� �? !����
�"����
��$�

�$
�������	#@�E 3) C�
���������$$��
�����	�&�� �?����1�� 	���"	E����� � �?
�"�@3
�$����2�������2���#� �?�	��2�����������	��!&����	#@�E �1��!�����	=����������
E����Z����	�9����
 %�1�
& 



6

�1��!��������	����#<
 !����
�"�;���� �!��#� �����=��#� (TBmeanB, TBmaxB, TBminB)  ����#<
 !��$#�	�=��1�� (TBdewB) $�

��
�#�#	�������� $=�	�	 33 �Z�	� A���������#��2���#
 ����������"%�� �	��
�&���N �.". 1951-2003 ����$	
�#<
 !�����
B (Apparent Temperature) �;���� �!��#� �����=��#� (TBameanB, TBamaxB, TBaminB) A����=�	�<$�
�1��!��#<
 !���
��
�"����#<
 !��$#�	�=��1���2�
�&���1���1	 ���	������Z�������91�	
���������
E�1��!� ���
���1�� Empirical 
Orthogonal Functions (EOFs), �&��;�������������	��� (Moving Average), 
���������
E����������	 (Variance 
Analysis), 
���������
E�
�2�?2	DE (Correlation Analysis), ���
���������
E
��Z�Z������9����1	 (Linear 
Regression Analysis) EOFs 	2��&����	���	������Z����9���2����?
# (Multivariate) ���	����91
2	��&���?�&
��� �	

���������
E����������	�9��?��	�������9���������9#��1��!�������	���
>& :���;?����&�������2��������
����
2�
 !����
�" �����
�"����
���#�� �����$#��
X��2���&�����	$=�	�	��
 ����Z���	
���
X��2���&���!�����2��
���������	
���
X��1��!�������	�	 A����=��
1���9#��1��!��	�9��?��	�������9���������	$=�	�	��
��
�&�
��$2�
��
����������
E:���91���	�����	 q �	
�<��1��!��#<
 !����
�"�	�����"%�� ����=�
�����$�2��#
����	����
�������� 53 �N  <  33 �Z�	�  $2��&����	9#��1��!�����&�	�1���
>& �	����$�
��$=�	�	�1��!��2��
����&�
2� 20998 9#�
�1��!� 

���������D�������	�� EOFs ��"2�
�2

�����
�������9����1	������9#��1��!�����������	���
>&�����
�2����$=�	�	��
 %��!&9#��	����X
����2������&���	�2���	����������	�2���9��?��	�������9�������&�	�
>&
���9#��1��!����� :���2��%���D�
���������
E� EOFs $��=�	�<$�
�����
AE����������	�&�� (Covariance Matrix) 

��������
AE�����2�?2	DE�&�� (Correlation Matrix) ����1��!� �?���$=��	
�1��!�������
���	�&� Eigenvalue, 
Eigenvector ����	#
�� Time Coefficient  (TC) :�� Eigenvector ���9#��	����X
����2�������Z!
������$�
9#�
�1��!����� A�����&��9#���� Eigenvector ����
�&� EOF :
�� (EOF Mode) ���$=�	�	 EOF :
���2��
��$���&�
2�
$=�	�	�2�����	9#��1��!����� �=�
�2��&� Eigenvalue :���
���$�������=��2�$�
��
%�
�	1�������&���&���� 
Eigenvalue $����	�2��&�	
2�����E�AX	�E�������������	�	�1��!���������D����%�1$�
��&�� EOF :
�� �2��	��
��
������	�����9������
����	#
�� TC �����&��9#���� Eigenvector �����Z�=�	�<%�1$�
C�����2��
�����
�1��!�����;��� (Projection) �	��&��9#���� Eigenvector 
�����&�� EOF :
�� �	��&��9#���� Eigenvector

�����&�� EOF :
�� ���#<���2��?��"@��� ���	�����
����2��;�
�&�
2	 (Orthogonality) �	�9��?��	��� �9&	�����
2�
�	#
�� TC �����&�� EOF :
�����#<���2�����	�����
����2��;�
�&�
2	�	�9������ $�
�#<���2���2�
�&�� ����
������	�	�1��!���������D����%�1$�
��&�� EOF :
�� ���#<���2��������	������&�
2	  �2�	2�	 C�����2��
�����
����������	����D����%�1$�
�#
 EOF :
�� $���&�
2�C�����2��
���������������	�	�1��!����� :���
��  
EOF :
����
 q  ��&�	2�	 $��D��������������	�&�	�
>&�	�1��!����� �2�	2�	 9#��1��!��
�&���������������	
�
�1�����
2�����������	�	�1��!����� ��&��$=�	�	�2����	1��
�&���
����������������
2��1��!����� �����Z
�2������
E%�1$�
C��������	#
�� TC �!<�1�� EOF :
���	:
����
 q ��&�	2�	 

C��2?DE���
���������
E EOFs ���
���1�� 1) �&� Eigenvalue ����2������E�AX	�E�������������	���
�D����%�1$�
��&�� EOF :
�� 2) 9#���� Eigenvector �=�
�2���&�� EOF :
�� :����&��9#���� Eigenvector 
���
���1���&��������
�&� Component Loading A����
��$������	�!��&��2�������D�u�
�2�?2	DE (Correlation 
Coefficient) ������	�&�����&�9��Z���=�	�$�����2��?2	DE�����	#
���1��!��	��&���Z�	�
���$#�����1��!������	 EOF 
:
�����Z!
��
��
�� ��� 3) �	#
�� TC A�������
��������	�����9�����������&�� EOF :
��



7

C�
���������
E� EOFs �=�
�2��1��!��#<
 !����
�"�	�����"%���	��
�&���N �.". 1951-2003 ���
B�&� 
EOF :
����� 1 ����#<
 !�����
�"�2���$X��2���� (TBmeanB, TBmaxB, TBminB, TBdewB, TBameanB, TBamaxB (�+ TBamin B)  �����Z�D����
����������	�	�1��!�����%�1Z���1���� 61.2 % Z�� 71.3% �=�
�2� EOF :
������
��� �����Z�D��������
������	����1��!�����%�1	1����
����������������
2� EOF:
����� 1 ����1�����������������	����D����%�1�
�	��&�� EOF :
�����&��
�1�����
2	 $�
�2
@<��2�
�&�� �����&�����������	:���&�	�
>&����1��!�����
�����Z�D����%�1$�
 EOF :
����� 1 �&�	����������	����
����&�		1�����Z!
��
����2��&�	�	 EOF :
�����
�
�����$$��
��$�
 ?noiseB 
�������������	���
�&�������&���Z�	���	�1��!����� �=�
�2���&���2�������
�#<
 !����
�" Component Loading A��������	�!�����&��2�������D�u�
�2�?2	DE��
�&��9#��1��!��	��&���Z�	��

2� EOF :
����� 1  ���&�����!�����
�1�����
2	�
����#
�Z�	�� �
��1	����Z�	��	 ����1��	�&��������&��&�	�1����=�
	�
$�
	�� 9#��1��!��#
�Z�	��������2�?2	DE����Z����	�9����
��&����	2��=��2>
2� EOF :
����� 1 $�
C��2�
�&��
�����Z��#�%�1�&� �����2�?2	DE����#<
 !����
�"��
�&���Z�	����&��!��������������	����#<
 !����
�"�#

�Z�	���
��
��$���2��&�	�1�����=����� �2�	2�	 ����������	�9��?��	�������D����%�1$�
 EOF :
����� 1  %�&%�1�
��
$�
����������	����1��!��#<
 !����
�"�;?���Z�	����Z�	�
	���
��� ���� ��
	�����&�	2�	 ��&�
��$�
����
������	����1��!��#<
 !����
�"�
����#
�Z�	��&��
2	 :������������	�2�
�&�� ��$$��
��$�
���
B
��<E�

����
�&�
=��	�������
2	 ������	���
>&�?���?����$������Z�����D�?��&��#<
 !����
�"�2���#
 ����������"%�� 
�2�	2�	 �?��� EOF :
����� 1  �����Z�91���	�2���	����
����� �?���	=�%��D����
��������	�����9��?��	�������9��
��������#<
 !����
�"�	�����"%��:���&�	�
>&��� �?���%�1�


��������	�����	�9��������� EOF :
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�2��?��	����
�1��������?��	���
&��%
�
�	
������� :���;?�������"�	����1�	 (Tropical) ���
����1�	 (Subtropical) �&�	������������

�&� 5 �N ��	
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��������	�����	������� (�"���@�&��"���@) �����$$��������2�?2	DE
����9����:��
2�
��������	����
 !����
�"���:�
����
��$�

�$
����	#@�E� �9&	 
���?������	��������<
x�A����	
��$

����
��$�
���
B
��<E
���D���9������	 q  ���	������91�	
����
����������
��������	��������	#
�� TC ��� �&��;�������������	��� 
(Moving Average) :���91 60 ����	 �	#
������ �=�
�2�������������

�&� 5 �N� �&�	
��
��&��;�������������	������
	1��
�&� 5 �N� �=�%�1:��	=��&��;�������������	��������

�&� 5 �N� ���1�� �	#
�� TC ����� A���$�%�1C��2?DE��� �&�C��
� �? (anomalies) ����	#
�� TC $�
�	#
������&��;�������������	��������

�&� 5 �N� 
�2�$�
	2�		=��&�C��� �?
�2�
�&��%��=�	�<
��&��;�������������	:���91 10 ����	 �	#
������ 

$�
C�
���������
E�?������� ���
y�&� �	#
����� TC ����#<
 !�����
�"�2���$X��2�����=�
�2��&��;����
���������	������	1��
�&� 5 �N� ����
��������	�����	�����2�	���92��$	 :����������
���
�&�%�����
�&��
�&��!��#�����&���=��#�A�����!&�	9&�������< 1 Z�� 4 �N� ���	�2
@<���&	����	#
���2�
�&�� C�
���������
E����
������	 (Variance Analysis) �����
1�
X	�&�
��������	�������	1��
�&� 5 �N�����#<
 !����
�"�2���$X��2���� ���
����E�AX	�E����������	��!&�	9&����� 17.6 Z�� 25.8 % �������������	�2��
������	#
�� TC :��
����E�AX	�E����������	����#<
 !����
�"�2��

�2���� �
��1	 TBminB ���	�2	�2�����������������	�2��
��
����	#
�� TC ���
2	 �2
@<�:����&	��
��&��
	�������	#
���&��;�������������	������	1��
�&� 5 �N��� TC ��� 
�!����
��������	�������2
@<���1��
2��29	�������
B
��<E��	:A& (Multiple ENSO Index) :������&�C��� �?
��
 (��) ����	#
�� TC �=�
�2��&��;�������������	������	1��
�&� 5 �N� ���
2�
��������1��
2����
B
��<E���	�
:> (��	�>�) :��?��&� �#<
 !����
�"�	�����"%�� �!� (��=�) 
�&��
�� �	��
�&������
���
�#
��<E���	�:> 
(��	�>�) �9&	 �	��
�&�� 6 ��2������
�����
B
��<E���	�:>�����
=��2��#	�������#��	��� 53 �N� �#�<
 !����
�"�	
�����"%���!�
�&��
����&����&	92� �9&	�����
2��#<
 !����
�"�	�����"%����=�
�&��
����&��92��$	�	��
�&�� 8 
��2������
�����
B
��<E��	�>������
=��2��#	�������#��	��� 53 �N 	�
$�
	�� �	��
�&�� �.". 1998-1998 �#<
 !���
��
�"�	�����"%��%�1��
���
�&���!&�	9&�����
�1������#��	��� 53 �N A��������1��
2�
���
�����
B
��<E���	��
:>�����	�>������
=��2��#	�����&���&��	���� ���	9&������N�2�
�&�� :���N �.". 1998 ���	�N����1�	����#��	�����"
%���	��� 53 �N� C�
���������
E�
�2�?2	DE (Correlation Analysis) ��	�2	�?��������&� �#<
 !����
�"�2���$X��2����
�������2�?2	DE����Z����	�9����
��&����	2��=��2>
2��29	�������
B
��<E��	:A&� :���;?����&������ TBmeanB, TBmaxB, 
TBamean B ��� TBamaxB ������&��2�������D�u�
�2�?2	DE�&�	�1���!� (��

�&� 0.5) C�
��"�
@�	�������
1�
X	�&� 
���
B
��<E��	:A&���	�d$$2�����=��2>�����C�
�����&�
��������	��������#<
 !����
�"�	�����"%���	����
�2�	 �����$�2		�@3�	%�1�&� C�
����������
B
��<E��	:A&�&�
��������	�����N�&��N����#<
 !����
�"�	
�����"%�� 	&�$���$�
���
�#���
���C&����
�1��%
���
%���������<�����1�	 ����
��$�
����C���
�����
�#<
 !��C��	�=����� ���
��������	�2������&�	�=��#&	�	�����<��1	"!	�E�!������
���#����A�[c
 :��
�%

��
�9����:��	&�$�C&�	��� ?Atmospheric TeleconnectionsB 	�
$�
	�� ����C2	������������
�":���;?����&��
����
��
�#	����	�����
�"�������
��E (Walker Circulation) ����
��$�

���������#����
����
������	�����1�	
��
�&��������
�"������� 	&�$����	�d$$2�������	
��	=�?������1�	��
$�
�����<��1	"!	�E�!�����
�
���#����A�[c
���!&�����"%��

	�
$�
	�� 
��������	�����	������� (�"���@�&��"���@)  �2����
B92��$	�	�	#
���&��;�������
������	��������

�&� 5 �N��� TC ��� TBmaxB, TBamaxB, TBminB ��� TBamin B :���#<
 !����
�"�2������2����	�����	�:	1��?������	
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������ q 
�2�$�
�����"���@��� 1970 A����!����
��������	�����2�
�&�������1��
2�9&���������?j��
������ 
���
B
��<E��	:A&����	�:	1�C���
���	�������������	�	��

�&� 10 �N� :�����
B
��<E���	�:>�
�����	���	
��������������	�	����&����2��
�&��
�������2����
=��2���	Z���#	��� A����!1$2

2	���		�� ?Climatic Regime ShiftB
��&����
B
��<E��	�>����$�%�&�
�����	
����
�����		1����
����������������
2����
B
��<E���	�:> 
�2�$�

�����"���@��� 1970 C�
���������
E�
�2�?2	DE �2��	2��	#	���������1���2�
�&���1���1	 :��?��&��	#
��
�&��;�������������	��������

�&� 5 �N ��� TC ����#<
 !����
�"�2������2�����������2�?2	DE����Z����	�9����
��&��
��	2��=��2>
2��29	�������
B
��<E��	:A&� �9&	�����
2����?��	
��������	���������2�	�1���1	  ��
�2��N �.". 
1990 ���	9&���"���@����#<
 !����
�"�	�����"%���!�����#��	��� 53 �N A��������1��
2��#<
 !���;�������:�
���
�!�
�&��&��
����
�	9&�����������
2	 C�
��"�
@�	�� �����
1�
X	�&����
B
��<E��	:A& ��$$������D�?��&�
��
������	��������#<
 !����
�"�	�����"%���	���������
�1�� 	�
$�

��������	��������#<
 !����
�"�	
�����"%����������1��
2����
B
��<E��	:A&��1� �2�?��&� TBminB ��� TBamin B ���	�:	1��?������	��&���&��	�����	
�2
@<��9����1	����2����&
����"���@��� 1950 ����2���
���?������	��������X������

�&� TBmaxB ��� TBamaxB �!����

���?������	��&���&��	������� TBminB ��� TBamin B �2�
�&�� ���2
@<��
���	
2��#<
 !���;����C��?��	:�
����?����!����	�	
"����@��� 20 $�

���?������	��������<
x�A����	
��$
C�����	������$�

�$
����	#@�E A����!1$2

2	���		��
� ���:�
�1�	 (Global Warming) $�

������������� ?��&� 
���?������	��� TBminB ��� TBamin B �	�����"%�� ���
�2�����������X������

�&��#<
 !���;����C��?��	:�
 �2�	2�	 
���?������	��� TBminB ��� TBamin B �	�����"%�� 	&�$����
�&�	�&�������	��&��
����&�C��
1��#<
 !���;����C��?��	���A�
:�
�
	������2��� ���:�
�1�	�?����!����	 Z����1	
��
������	�����	�����������#<
 !����
�"�	�����"%��A����������2�?2	DE
2����
B
��<E��	:A& ������2
@<�
�����1������
2�� ���:�
�1�	�2	�	������$�

���?������	���
x�A����	
��$
 ���
B92��$	$�
C�
��"�
@�	��  
�d$$2�
�2
���
&��
1�
��
��������	�����2�
�&�� �2�%�&�����Z��
���
�����#�%�192��$	 �&��
��$�
?j��
������
����������	���D���9������� �? !����
�" �9&	 ���
B
��<E��	:A&� 
���C�
����:�����$�
����C2	���
���� �? !����
�"����
��$�

�$
�������	#@�E :���2��%� ��$$���1��$�&� 
��������	��������
��$�
����C���
��
���?j��
����������������	���D���9������� �? !����
�" 	&�$����!����
����2
@<��	�9��?��	������
�9�����������
�&��$�

��������	��������
��$�

�$
����	#@�E ��&�����?�$��<�Z��?j��
���������� !����
�" ������
�!����
�%

���9����:�����A2�A1�	���
������	���&��d$$2� ��	�
%�&���	�	�2
@<��9����1	��� (Nonlinear) 
A��������Z�����������%�1
2��=�?2��?�����&� ?1 P�� 1 ���
��	��P 2B 	2
�����"����E
����&�	 %�1��	��	�%�1�&� 
� ���:�
�1�	�	9&��%�&
���"���@���C&�	�� ��$$��
��$�
?j��
����������������	���D���9������� �?
 !����
�" ������	�:	1�C���
���2���	��& $=�	�	��2������
�����	 ��"��� ����������������#	��� :����C�
����$�


���?������	��������<
x�A����	
��$
 ��

�&�C�
����:�����$�
���
B
��<E����	
��$
 �2���&������
X	%�1
92��$	 %�1�
& ?j��
���������
B
��<E��	:A&������	�:	1�C���
����	�������������	�	
�2�$�
�����"���@��� 
1970 C�
��"�
@�:���91���$=��������<��"����E �2����#�&� 
���?������	��������<
x�A����	
��$
$��=��
1
� ����
���	
2����
B
��<E���	�:>  (El Niño-like) �
�����	�&����������������	�	���	�	�	���  �2�	2�	 �d$$2����
��C��&�
��������	�����#<
 !����
�"�	�����"%���	������� $�����	�����X	����1��������1��"�
@��	
�����������&�%� �?����D���� ��������Z��
�2>>�<
��������	��������
��$�
����C���
�����?j��
������
����������	���D���9������� �? !����
�" ��
$�
����C2	������� �? !����
�"����
��$�

�$
������
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�	#@�E Z1�%�&�=�	��Z�����
�#���
&��
1�
��
��������	���� C�$�

��"�
@�	�� %�1������&��92��$	 �&� TBminB ��� TBamin B

�	�����"%�� �	9&�� 53 �N���C&�	�� �?������	��&����&��	�����	�2������	&��
�$

$�
�2
@<�
���?������	��� TBminB ��� TBamin B�	�2�����������X������

�&� TBmaxB ��� TBamaxB �&�C��
1�#<
 !���
��
�"��=��#��#
 ����������"%����2��!����	�&�	�1����
��&����	2��=��2>�	�2����;���� 1.35 °C  ���	�������� 
50 �N ����$	9&������#<
 !����=��#�����#<
 !���!��#�����2	 (Diurnal Temperature Range; DTR) �	�����"%��
���	�:	1��������������� q ��&����	2��=��2>�9&	
2	�	�2����;���� -0.99 °C  ���	�������� 50 �N� �d$$2��;?���
&����
��C�
�����&� DTR ��$$��
��$�

�������2����9#�9	����� ����9������	 
�������2����?��	�������
1���1�

����������� �������������	�����
��$�
�2
@<�
���91���:�9	E��������	 :���;?����&������ �	�����<9#�9	
�������� 9&����� DTR $����
�&��
�� ��&��&��%�
X��� $�
C�
���������
EC�
�������9#�9	������&��2
@<�

��������	��������#<
 !�����
�" ?��&� �&��;��������N����#<
 !����
�"��=��#�����!��#�����2�� DTR  ���:�

���A�
:�
�
	��
�����1����=�	�<$�
�Z�	����%�&�2����!&�	9#�9	����� ��
�&���?�����X
	1������������������
2��&�
�2�
�&���1���1	����=�	�<$�
�Z�	�����2����!&�	���9#�9	����� 	�
$�
	�� �d$$2������C�
�����&� DTR ��$$��
��$�


��������	�����������
�#	����	���� �? !����
�":�
 A������
���1�� 
���?������	�����}���������	92�	
������ ���
���?������	���������X	?��	C���	������$�
~	�����������<
x�A����	
��$
 �=�
�2������"%�� 
DTR ������	�:	1��������������� q A������2
@<�
��������	��������
���	��������1��
2	�#
 �� �&�9��Z��
�
�&�
=��	�����
��������	������� DTR %�&	&�$��
��$�
C�
����������
B
��<E�;?���
&� ��&���	
��
���1�	�
1�
X	Z�� 
���?������	�&�	�1����
����#<
 !����
�"��=��#� �	����$�

������	���&�����C���
������
?j��
����������������	���D���9������� �? !����
�":�
 
�������C2	������� �? !����
�":�
���
�
��$�

�$
�������	#@�E 
��������	��������
���	
2�C��2�
�&���1���1	 %�&%�1�
�����	�	�����"%����&�	2�	 C�

��"�
@��	
��� q ?��	������:�
 ���#�Z�� 
��������	��������#�<
 !����
�"��=��#����9&����� DTR �����2��!����	
��&���&��	��������������&����	2��=��2>�	"����@��� 20 A����&�C��
1$=�	�	�2	
�����	�����
�"��X	�������9&��
���j�!�
	���2�	����&j�!��%�1C��������	

���	�������2�
2	:���2��%��&� 
��������	�������� �? !����
�":�
�2�������2�	���������� %�&�&�$�
�
��$�
����C���
�����?j��
����������������	���D���9���� 
����
��$�

�$
�������	#@�E ���	�d$$2����
�=��2>����&�C�
������&��
�1����������#	����&�� �?����1�� ����	���"	E����� � �?�"�@3
�$����2���
����2���#� �?�	��2�����������	��!&����	#@�E �	����$�
����A2�A1�	�������� �?����1�����	���"	E�����
����2������%
��&��d$$2� ��	�
��������2�
�&�� 
��������	�������� �? !����
�":�
 ��$
&��
1�
��
C�
�����	�2
@<����%�&���	�	�9����1	��� (Nonlinear) �2��=�?2��?�����&� ?the straw that breaks the camelTs 
backB  A���$��&�C��
1
������	������&�	�1���#	����������� �?����1�����	���"	E����� �&�
��������	����
�?�����X
	1������ �? !����
�":�
 �2���&������
X	%�192��$	 %�1�
& 
������	����&���#	������
�1���������
����� �?����1�����	���"	E������2�� !�� �����:�
 �&�
��������	��������#<
 !����
�"���:�
�?�����& 
0.6±0.2 ��"��A��A��� �	9&��"����@��� 20 


�2
3�	��������"����E��&�������	�d$$#�2	 ���#92��$	�&� 
��������	�������� �? !����
�"�2���	���2�
 !�� ��������2�:�
 :���;?����&������ 
���?������	����#<
 !����
�"�	9&��%�&
���"���@���C&�	�� %�1�&�C�
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�����&������ �?����1�����	���"	E������&�� q �	
��� !�� �����:�
 �2���&�����
��������	�������%�1
�1	?� %�1�
& 
���������� !���	�=���X��	�����<�2��:�
�
	�������1 
����������
��� ���2�	�=������!����	 
��
������	�2��!&�2��:�
���?��	�����������Z�=���9�������?�9����2��E���9	���	����1�	 (Tropical) ���
����1�	
(Subtropical) 
���?���
����������$=�	�	���9�
����?�9����2��E���9	�� j�!
���$��>����:����?�9����2��E�
�	�����< mid-to-high latitude ������	 ?�9����2��E��
��
���C��?2	DE��X����	 	�
$�
	�� �����2��?2	DE��
�&��

��������	��������#< !���	���2� !�� �� ���
��������	������������ �?����1�����	���"	E����� �2�
���
B92��$	�	�
���#�� 
��������	�������
��
��$���2����$=�	�	���9�
�����?����	?�9����2��E�	
�����<9��~d������23����[��E�	�� �&�
��������	�����2���	�����2�	��������������#<
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1. Introduction

Variability and change are realities of the climate system, and static, so-called 
equilibrium, conditions are unlikely to be a part of the system on almost any time scale. 
The palaeo-records clearly show that the global climate has varied continuously on all 
time scales, with global mean condition masked by immense variations in regional 
responses (Kasting, 1993; Petit et al., 1999; IGBP, 2001a,b; IPCC, 2001a). Fluctuations 
of surface temperature are the most obvious and probably well-documented key indicator 
of global climate change (e.g., Hurrell, 1995,1996; Easterling et al., 1997; Enfield and 
Mestas-Nuñez, 1999; Mann et al., 1999; Easterling et al., 2000b; IPCC, 2001a; 
Trenberth, 2001). Surface temperature plays a crucial role in regulating evaporation and 
transpiration processes and so have direct connections to both the hydrological cycle and 
surface energy budget. Because temperature significantly affects biological processes 
and metabolic rates at almost every trophic levels (Hughes, 2000; McCarty, 2001; 
Ottersen et al., 2001; Walther et al., 2002), ecosystem functioning and dynamics, as well 
as human health and comfort are all inevitably influenced by changes in both magnitude 
and rate of surface temperature through a variety of mechanisms. The additional stress of 
surface temperature changes will interact in different ways across regions that may 
reduce the ability of some environmental systems to provide, on sustained basis, key 
goods and services needed for successful economic and social development. However, 
there are many uncertainties in determining their impacts and predicting probable 
climate scenarios for the future, due to our incomplete understanding of interlinks of 
global climate system, forcings, responses and consequences (IPCC, 2001a). Studies of 
global and regional surface temperature variations and their impacts have, therefore, 
undergone a quantum jump and are one of the fundamental aims of global change 
research (IGBP, 2001a,b; IPCC, 2001a). 

There is now growing evidence that human activities have increasingly 
influenced the global climate through the enhanced greenhouse effect, by past and 
continuing emission of carbon dioxide (COB2B) and other gases which will cause the 
temperature of the Earth’s surface to increase –popularly termed the “global 
warming”(IGBP, 2001a,b; IPCC, 2001a; Trenberth, 2001). For a thousand years prior to 
the industrial revolution, abundance of the greenhouse gases was relatively constant. 
However, as the world’s population increased, as the world became more industrialized 
and as agriculture developed, abundance of the greenhouse gases increased markedly. 
The amount of COB2B in the atmosphere has increased by about 31 percent since 1750 
(IPCC, 2001a). The modern instrumental records indicate that surface temperature 
changed in a similar sense to atmospheric COB2B concentrations, with a global mean 
warming of 0.6± 0.2 °C over the past 100 years and the 1990s being the warmest decade 
on record (IPCC, 2001a). Synthesis of information from tree rings, corals ice cores, and 
historical data further indicates that the 1990s were the warmest decade in at least the 
past 1,000 years (IGBP, 2001a,b; IPCC, 2001a). In the light of new and stronger 
evidence and taking into account the remaining uncertainties, the Intergovernmental 
Panel on Climate Change (IPCC) concluded in 2001 that most of the warming observed 
over last 50 years is attributable to the increase in atmospheric greenhouse gases due to 
human activities, and that global warming was indeed happening faster, and the 
consequences looked more severe than predicted.
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On interannual and decadal timescales, there is also good evidence that 
fluctuations of regional surface temperatures are somewhat closely linked to changes in 
large-scale atmospheric and ocean circulations, as well as deep ocean heat content (e.g.,
Loon and Rogers, 1978; Rogers, 1984; Li, 1990; Leathers et al., 1991; Yasunari and Seki, 
1992; Trenberth and Hurrell, 1994; Hurrell, 1995,1996; Mantua et al., 1997; Zhang et al., 
1997; Qian and Zhu, 2001). Persistent large-scale atmospheric patterns tend to be 
wavelike so that regional changes of atmospheric heating, if powerful and persistent 
enough, can give rise to a sequence of remote atmospheric teleconnections (Horel and 
Wallace, 1981; Wallace and Gutzler, 1981; Trenberth, 1990; Zahn, 2003). Thus a 
number of well-separated areas of anomalous temperature with opposite character may 
be produced. The strongest teleconnection pattern which has well documented within the 
earth’s climate on seasonal to decadal timescales is the set of processes known as the El 
Niño-Southern Oscillation (ENSO). This phenomenon is the strongest natural mode and 
involves a set of complex interactions between the tropical oceans and the atmosphere 
centered on the Pacific and Indian Ocean basins with the life-cycle typically lasting from 
2-7 years (e.g., Horel and Wallace, 1981; Philander, 1990; McPhaden, 1999). The ENSO 
is now known to be at the root of many of the disastrous interannual climate fluctuations 
affecting tropical and subtropical countries (Rasmusson and Wallace, 1983; Hawana et 
al., 1989b; Philander, 1990; Li, 1990; Wang and Li, 1990; Janicot et al., 1996; Ware and 
Thomson, 2000; Barlow et al., 2002; Hoerling and Kumar, 2003; Huber and Caballero, 
2003). Moreover, warming over the large continental areas and cooling over the North 
Pacific and North Atlantic in the winter during the past three decades is another example 
of more complex consequences of interconnected climate networks and interplay of 
different climate modes (IPCC, 2001a). This cold ocean-warm land pattern has been 
linked to changes in the atmospheric circulation over the northern hemisphere, in 
particular, to the tendency in the past few decades for the North Atlantic Oscillation 
(NAO) to be in its positive phase (Hurrell, 1995; Hurrell and Loon, 1997). Similarly, the 
Pacific-North American (PNA) teleconnection pattern has been in a positive phase in 
association with the tendency for favoring more the warm El Niño phase of ENSO 
phenomenon following the 1976/77 climatic regime shift (Nitta and Yamada, 1989; 
Trenberth, 1990; Hurrell, 1996; Zhang et al., 1997).

Although global temperature has increased in the past century, its pattern was not 
spatial uniform or temporal monotonic, with large regional differences (Chapman and 
Walsh, 1993; Schlesinger and Ramankutty, 1994). For example, the winter temperature 
in northern Europe has increased during the past 30 years, whereas northeastern America 
and Greenland have experienced increasingly colder winters in the same period (Hurrell 
and Loon, 1997). Much of this variation in regional winter climate conditions in the 
northern hemisphere can be attributed to variations in the natural climate pattern over the 
North Atlantic or NAO (Hurrell and Loon, 1997). The climate of a given region is 
determined by the interaction of forcings and circulations that occur at the planetary, 
regional and local spatial scales, and at a wide range of temporal scales (IGBP, 2001a,b).
Planetary scale forcings regulate the general circulation of the global atmosphere. This in 
turn determines the sequence and characteristics of weather events and weather regimes 
that characterize the climate of a region. Embedded within the planetary scale circulation 
regimes, regional and local forcings and mesoscale circulations modulate the spatial and 
temporal structure of the regional climate signal, with an effect that can in turn influence 
planetary scale circulation features. Because of their complex interaction, there is 
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increasing need to better understand the processes that determine regional climate, along 
with the teleconnection effects of regional forcing anomalies (IPCC, 2001a).

The most highly developed tool which has currently used to predict future 
climate is known as coupled general circulation models (GCMs). These models are 
based upon sound, well-established physical principles and use descriptions in simplified 
physical terms of atmosphere, ocean and land processes. The predictive powers of a 
model can be tested by running the model with known forcing from the past through it 
and then comparing the results to actual climate records. Although models are 
exceedingly useful tools for carrying out numerical climate experiments, they do have 
limitations and must be used carefully (Trenberth, 2001). The latest models have been 
able to reproduces the major large-scale features of atmosphere, ocean and land 
processes in the past century or so with increasing accuracy (IPCC, 2001a). However, on 
regional scales (2000 km or less), there are significant errors in all models (Mearns et al., 
1995; IPCC, 2001a). This is mainly due to the complexity and scale of the physics 
involved and difficulties in relating the area-mean GCM output to the point or station 
scale (Osborn, 1997; Osborn and Hulme, 1997; Boyle, 1998). Moreover, our climate 
models so far are of relatively coarse resolution, and simplified versions of the real world 
(IPCC, 2001a; Trenberth, 2001). Given the unproven reliability of GCMs at small scales 
especially in simulating surface temperature, it is desirable to search for signals of 
surface temperature changes in the observational records. 

A surface temperature signal or any other climatic variables at any fixed 
location/region will typically consists of a complex mixture of variation, resulting from 
interactions among physical processes within the atmosphere-ocean-cryosphere system 
that operate on a wide range of spatial and temporal scales. Interactions within the 
components of the climate system usually include positive and negative feedbacks. 
When these feedbacks combine properly and balance each other, they can give rise to 
irregular but can be separated and identified as trends, periodic and random oscillations 
(Jassby and Powell, 1990; Ware and Thomson, 2000). The motivation for exploratory 
methods of data analysis in climate comes from the need to separate the climate “signal” 
from the background climate variability or “noise”. This decomposition of the data is 
done with the hope of identifying the physical processes responsible for the generation of 
the signal (Emery and Thomson, 1997). A fundamental characteristic of the statistical 
methods for signal detection is their ability to represent spatially distributed data in a 
compressed way such that the physical processes behind the data, or their effects, can 
best be visualized (Venegas, 2001). As summarized by Emery and Thomson (1997) and 
Venegas (2001), signal detection in climate is useful to achieve four main goals in 
climate research:

1. to recognize the patterns of natural climate variability and distinguish them 
from presumed anthropogenic or other external effects,

2. to use the physical mechanisms inferred from the detection signals to construct 
numerical climate models,

3. to validate numerical climate models by comparing the fundamental 
characteristics of the modeled data with those of the observed data, and 

4. to use the signals themselves to forecast the behavior of the system in the 
future. 
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The complicated behavior and the non-linear character of the climate system 
provide a real challenge to the exploratory data analysis methods (IPCC, 2001a). Climate 
variations on different time scales, for example, may be connected with one another by 
nonlinear mechanisms. Some episodic phenomena, such as the periodic seasonal changes 
in surface temperatures, are better suited to be analyzed in the frequency domain. For 
certain phenomena it is not clear whether an oscillatory or episodic picture is most 
appropriate. Also, a number of signals, such as ENSO, exhibit a mixture of time-domain 
or “event” characteristics and frequency-domain or “oscillatory” characteristics (Emery 
and Thomson, 1997). Such quasi-oscillatory signals are characterized by a dominant 
timescale of variation, and are often combined with frequency modulation and episodic 
large-amplitude events. The choice of the appropriate analysis method is of extreme 
importance when the objective is to search for specific signals in time, space, or time and 
space combined, within large multivariate data sets (Venegas, 2001). 

It is usual in climate studies to be presented with a large data set consisting of 
time series over a grid of stations which we wish to compress into a smaller number of 
independent pieces of information. Typically it is necessary to deal with an ensemble of 
instantaneous samples (maps) of geophysical fields (for example, surface temperature) 
defined at a number of points (stations). In such cases, the data are in the form of 
simultaneous time series records from a grid on a horizontal plane: xBiB(t), yBiB(t). The grid 
points may be regularly spaced (such as model-generated data or grid observation) or
irregularly spaced (such as locations of meteorological stations). Analyses of data sets 
with the described characteristics, that is, consisting of a number of spatially distributed 
time series are known as multivariate statistical procedure.  The method of Empirical 
Orthogonal Functions (EOFs) is a particularly useful technique for compressing the 
variability in this type of data sets and is most widely applied to the problem of spatio-
temporal signal detection in climatic data sets (Lagerloef and Bernstein, 1988; 
Preisendorfer, 1988; Emery and Thomson, 1997). This method is also known as 
Principal Component Analysis (PCA). The EOF procedure is equivalent to a data 
reduction method widely used in the social sciences known as factor analysis. An
advantage of EOF analysis is that it provides a compact description of the spatial and 
temporal variability of data series in terms of orthogonal functions, or statistical modes. 

In this study, the EOF analysis as well as other multivariate statistical techniques 
were applied. The primary objective is to identify the dominant spatio-temporal patterns 
of surface air temperature in Thailand, which the time evolution of their leading modes 
can further be investigated :  

1.   interannual and multi-decadal variability as well as long-term trends, 
2. its relation to the ENSO and anthropogenic-induced climate changes and the 

possible linking mechanisms, and
3. its possible biophysical and socio-economic impacts.       

The paper is organized as follows. An analytical method and data sources are 
outlined in the next section. Also reviewed in this section will be the basic concepts of 
EOF analysis and EOF computation using the scatter matrix method. Physical 
interpretation of EOF analysis and temporal structures of the EOF1 coefficient series and 
their relations to large-scale climate signals are presented in section 3. The final section 
goes on discussing advantage/disadvantage of analytical technique, possible 
causes/effects of surface air temperature changes, and implication for future research.
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2. Analytical methods and data sources 

2.1. Basic concepts of EOF analysis 

EOFs as used by meteorologists and oceanographers are a statistical technique for 
analysis of the spatial or temporal variability of physical fields. For example, a situation 
benefiting from such analysis occurs when a succession of snapshots of the surface 
temperature field over any given region of the globe is made at monthly times during ten 
years or longer. When these snapshots are viewed in rapid succession, it becomes 
apparent to the eye where the areas of great variability of surface temperature are. In 
order to succinctly represent and think about such complex variations, scientists in both 
meteorology and oceanography have learned over recent decades to use and develop the 
concept of EOF analysis, a tool arising originally in biology and psychometey, to resolve 
the complex variance patterns of physical fields. Thus, EOF analysis is simply a method 
for portioning the variance of a spatially distributed group of concurrent time series. Its 
goal is to replace the spatial and temporal variability of original data series by a smaller 
number of new variables, linear combination of the original variables, that capture most 
of the total original variance but are uncorrected with each other (Davis, 1976; Lagerloef 
and Bernstein, 1988; Preisendorfer, 1988; Dunteman, 1989; Jassby and Powell, 1990; 
Emery and Thomson, 1997). The new variables are called orthogonal functions and are 
arranged in descending order according to the amount of the original variance they 
reproduce. Usually, most of the variance of a spatially distributed series is in the first few 
orthogonal functions whose patterns may then be linked to possible dynamical 
mechanisms. The theory behind EOF computation is straightforward (see, for example, 
Preisendorfer, 1988, Dunteman, 1989; Emery and Thomson, 1997 for a particularly 
compact and lucid description). There are two approaches for computing EOFs for a 
number of time series. The first constructs the covariance matrix of the data series and 
then decomposes it into eigenvalues and eigenvectors. The second uses the Singular 
Value Decomposition (SVD) of the data matrix to obtain all the components of the EOFs 
(eigenvalues, eigenvectors, and time-dependent amplitudes) without computation of the 
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covariance matrix. The EOFs determined by the two methods are identical. The 
differences are mainly the greater degree of sophistication, computational speed, and 
computational stability of the SVD approach. Only the EOF computation using the 
scatter matrix will be described below. Details of the SVD method can be found in 
Preisendorfer (1988) and Emery and Thomson (1997). Note that the readers who are 
unfamiliar with matrix algebra and eigenvalue-eigenvector problems should review their 
basic concepts which can be found in many basic mathematical textbooks.   

The algebratic essentials of EOF analysis can be described as follows. Let z(t,x) be 
surface temperature or other climatic variables at point x in any given area of the globe at 
time t. Suppose this measurement be taken over the set of locations x = 1,…, p  at times t
= 1,…, n. Thus the snapshots referred to above are collections {z(t,x) : x = 1,…, p} of 
reading z(t,x) taken at each of the n times t, and are centered on their time averages. It 
can be thought these collection as p x 1 (i.e., column) vectors UzU(t) = [z(t,1),…, z(t,p)]P

T
P

forming a swarm of points about the origin of a p-dimensional euclidian space EBpB. The 
symbol “T” denotes the transpose operation. These collections can also be placed into an 
n x p matrix: 

Location →

Z =                                                                                                                                                        

The first step in the EOF analysis of Z is to center the values z(t,x) on their averages over 
the t index. Thus, for each x = 1,…, p, t-centered values can be written: 

and form the anomalies or departure from the record mean

This procedure ensures that analysis is not dominated by the variance from any given 
locations (all locations are given a relatively uniform distribution of variance over the 
different spatial locations). Using these t-centered values z′(t,x), a new n x p matrix Z′
can be formed in the manner of (1) : 

Location →

zB1B(1,1) .  .  . zB1B(1,p) 

. .  .  . .

zBnB(n,1) .  .  . zBnB(n,p) 

↓
Time
.

(1)

(2)

(3)

∑
=

=
n

1t
)x,t(z

n
1)x(z

).x(z)x,t(z)x,t(z −=′
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Z′  =                    
.

Data matrix Z′ is now used to derive the spatial covariance matrix RBZ′Z′ Bof the field z′(t,x)
by multiplying matrix transpose of Z′ (Z′P

T
P)P Pby its matrix  Z′  :

RBZ′Z′B = Z′P

T
P ∗ Z′ .

(5)

Expending the product of matrices :

RBZ′Z′B  = 

where 〈z′BiBz′BjB〉 is the covariance between time series z′BiB  and z′BjB (z′B B at locations i and j) 
defined as : 

where i, j = 1,…, p. The matrix product RBZ′Z′ Bis symmetric and square, even if Z′  itself is 
not square. A dimension of RBZ′Z′ B is p x p.  It should be noted that some authors define the 
data matrix Z′  as the transpose of that defined in equation (4), that is, with n columns 
corresponding to time steps and p rows corresponding to locations. In such case, the 
determination of the spatial covariance matrix should be done as

                                                        RBZ′Z′B = Z′ ∗Z′P

T
P.                                                         (8)

The rest of the procedure, however, is identical to what is described here. 

Once the covariance matrix has been calculated from the data, the EOF analysis can 
be done by solving eigenvalue-eigenvector problems which RBZ′Z′B  is decomposed into 
matrices L and E: 

RBZ′Z′B ∗ E = E ∗ L or 
                                                  (RBZ′Z′B - L) ∗ E = 0.                                                     (9)

L is the p x p diagonal matrix containing eigenvalues λBk B(k = 1, …, p) of RBZ′Z′ , Band the 
off-diagonal elements of RBZ′Z′ Bare all zero: 

z′B1B(1,1) .  .  . z′B1B(1,p) 
. .  .  . .

z′BnB(n,1) .  .  . z′BnB(n,p) 

〈z′B1Bz′B1B〉 〈z′B1Bz′B2B〉 .  .  . 〈z′B1Bz′BnB〉

.  .  . .  .  . .  .  . .  .  .

〈z′BnBz′B1B〉 〈z′BnBz′B2B〉 .  .  . 〈z′BnBz′BnB〉

↓
Time

(4)

(6)

(7)),t(z)t(z
n
1zzzz j

n

1t
iijji ′′=′′=′′ ∑

=
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L =

The square matrix E also has dimension p x p. Its column vectors eBkB (k = 1,…, p) are the 
eigenvectors of RBZ′Z′ Bcorresponding to eigenvalues λBkB: 

E =

→→→→ Eigenvector eBkPB

The equation in (9) governs the required direction eBkB of extremal scatter. Non-trivial 
solutions (i.e., eBkB ≠ 0) of this set of p linear algebraic equations for the components of eBkB

=[eBkB(1), . . ., eBkB(p)]P

T
P occur only for special values of λBkB. In theory of linear algebra, it is 

shown (Wilkinson, 1965; Franklin, 1968) that a symmetric matrix such as RBZ′Z′B  in (6) 
generally has p eigenvectors eBkB = [eBkB(1),…, eBkB(p)]P

T 
Pin EBp Band p associated real, non-

negative eigenvalues λBk Bsuch that 

RBZ′Z′B ∗ eBk B= λBk B∗ eBkB ,  k = 1 … p.                                  
(12)

The eigenvalue-eigenvector problems in (9) correspond to the series of linear system 
equations:

[〈z′B1Bz′B1B〉 -λB1B]eB1B + 〈z′B1Bz′B2B〉eB2B + ,…, 〈z′B1Bz′BpB〉eBpB =0

〈z′B2Bz′B1B〉 eB1B + [〈z′B2Bz′B2B〉 -λB2B] eB2B + ,…,〈z′B2Bz′BpB〉eBpB =0                     
(13)
                                                      …                    …                         …      

〈z′BnBz′B1B〉 eB1B + 〈z′BnBz′B2B〉 eB2B + ,…,[〈z′BnBz′Bp B〉 -λBpB]eBpB =0 .

Since the data matrix Z′  is real, the covariance matrix RBZ′Z′B  is positive definite, which 
means that all its eigenvalues are greater or equal to zero. Each non-zero eigenvalue λBkB

in matrix L is associated with a column eigenvector eBkB in matrix E. The eigenvector 
matrix E has the property that 

E ∗ EP

T
P = EP

T
P ∗ E = IBpB,         (14)

λB1B
0 .  .  . 0

.  .  . λB2B
.  .  . .  .  .

0 0 .  .  . λBpB

eB1B(1) eB2B(1) .  . eBpB(1)
.  .  . .  .  . .  .  .  .  .
eB1B(p) eB2B(p) .  .  eBpB(p)

↓↓↓↓
e1

↓↓↓↓
e2

↓↓↓↓
ep

(10)

(11)

.

.
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where IBpB is the p x p identity matrix with ones in the principal diagonal and zeroes 
elsewhere. E ∗ EP

T
P = EP

T
P ∗ E = IBpB simply indicates that the cross products of any two 

eigenvectors are 0 and the sum of squares of the elements for a given eigenvector are 
equal to 1. This means that eigenvectors are uncorrected over space, that is, they are 
orthogonal to one another. Each eigenvector EBkB represents the spatial EOF pattern of 
mode k (it has dimension p, that is, the number of locations in the original data). 

From matrix eBkB, time-dependent amplitudes, aBkB(t), of the data set can be derived by 
projecting the original data series z′(t,x) onto eigenvector eBkB  and summing over all 
locations p :

where x = 1,…, p counts the location, t = 1,…, n counts the time steps and k = 1,…, p
counts the EOF modes. These aBkB(t), thought of as time series { aBkB(t) : t = 1,…, n}, have 
the important property of temporal uncorrelatedness, and they carry information about 
the variance of the data set along the direction eBkB. In matrix notation, matrix A which has 
dimension n x p is obtained by multiplying matrices Z′ and E:

                                                   A = Z′ ∗ E.                                                             (16)

Just as the spatial patterns EBkB are orthogonal in space, the aBkB(t) are orthogonal in time. 
This means that the time-averaged covariance of the amplitudes satisfies

i, j = 1,…, p,

where  δBijB is the Kronecker delta :

The overbar in (17) denotes the time-averaged value and 
B

is the variance in each EOF mode. The matrix version of this is

AP

T
P ∗A = L.

(20)

The eigenvalues in L are usually sorted in decreasing order according to its 
corresponding eigenvector, so that λB1 B> λB2B > … λBpB. Each eigenvalues λBkB is proportional 
to the percentage of the variance of the original data that is accounted for by mode k. 
This percentage is calculated as : 

(15)

(uncorrected time variability),       (17)

(18)

(19)
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The first mode contains the highest percentage of total variance, λB1 B; of the remaining 
variance, the greatest percentage is in the second mode, λB2B, and so on. Since EOF modes 
and their time-dependent amplitudes are uncorrected over time and space, each one 
makes an independent contribution to accounting for the variance of the original data set.  
If we add up the total variance in all the time series, we get 

                                Sum of variances in original data = sum of variances in eigenvalues.  
Finally and most important, the original centered data set can be totally represented in 
the form:

                             t = 1,…,n ; x = 1,…, p.

In matrix notation :

                                                               Z′ =A ∗EP

T
P.                                                     

(24)P

As noted above, if the eigenvalues are ordered by size (that is, by fraction of the 
variance explained by the corresponding eigenvector), it is usually found that only the 
first few empirical modes account for a very fraction of the variance. The reconstruction 
of an approximate, compressed and less noisy version Uz′U (t,x) of the original z′(t,x), using 
only the first few modes (k) with k << p, can be represented meaningful physical 
processes, which are associated with fundamental characteristic spatial and temporal 
variability in a very large data set. This leads to a significant reduction of the amount of 
data while retaining most of the variance of variables.  In addition, the synthetic version  
Uz′U (t,x) can produce a lower total mean-square error, because sum of variances in 
eigenvalues (right term in (22))is close to sum of variances in original data (left term in 
the (22)).

2.2. Data sources 

A set of surface weather observations for a 53-year period (1951-2003) collected at 
34 stations in Thailand (Table 1) forms the basis for the EOF analysis. The data set 
obtained from the Meteorological Department of Thailand consists of monthly averaged 
mean, maximum, minimum temperatures (TBmeanB, TBmaxB, TBminB), and monthly averaged 
mean dewpoint temperature (TBdewB) which are all derived from daily observations. The 34 
site records used here were chosen on the basis of record length and completeness, the 
requirement that there were no significant effects from station relocation during the 
period, and to provide a reasonable spatial coverage over much of Thailand. Monthly 
averaged mean, maximum and minimum apparent temperatures (TBameanB, TBamaxB,B BTBaminB), 

(22)

(23)
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which combine temperature and humidity effects on the human body, were further 
calculated by using Steadman’s (1984) regression equation

TBx B= -1.3+ 0.92*t +2.2*e,                                         (25)

where TBxB is TBameanB, TBamaxB,B Bor TBaminB, t is TBmeanB, TBmaxB or TBminB and e is water-vapor pressure 
(kilopascals). The effects of wind and radiation are ignored in this equation, and e were 
calculated from TBdewB as:   

.
3.237T

T27.17
exp6108.0e

dew

dew








+

= (26)
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Table 1. Listing of weather stations used in this analysis. Asterisks indicate stations which data are available from 1952 to 2003.

Station 
number

Station Code       Province Location (latitude; N, longitude; E)

1 303201    CHIANG RAI 19° 55′ , 99° 50′
2 327501    CHIANG MAI 18° 47′ , 98° 59′
3 330201    PHARE* 18° 10′,  100° 10′
4 331201    NAN 18° 47′,  100° 47′
5 351201    UTTARADIT 17° 37′,  100° 06′
6 376202    MAE SOT 16° 40′,  98° 33′
7 378201    PHITSANULOK 16° 47′,  100° 16′
8 379201    PHETCHABUN* 16° 26′,  101° 09′
9 354201    UDON THANI 17° 23′,  102° 48′
10 356201    SAKON NAKHON* 17° 09′,  104° 08′
11 357201    NAKHON PRANOM* 17° 25′,  104° 47′
12 381201    KHON KAEN 16° 26′,  102° 50′
13 383201    MUKDAHAN 16° 32′,  104° 45′
14 405201    ROI ET 16° 03′,  103° 41′
15 407501    UBON RATCHATHANI 15° 15′,  104° 52′
16 431201    NAKON RATCHASIMA 14° 58′,  102° 05′
17 432201    SURIN 14° 53′,  103° 30′
18 400201    NAKON SAWAN 15° 48′,  100° 10′
19 425201    SUPHAN BURI* 14° 28′,  100° 08′
20 426201    LOP BURI 14° 48′,  100° 37′
21 450201    KANCHANA BURI 14° 01′,  99° 32′
22 455201    BANGKOK METROPOLIS 13° 44′,  100° 34′
23 455601    DON MUANG AIRPORT 13° 55′,  100° 36′
24 440201    ARANYA PRATHET 13° 42′,  102° 35′
25 459204    SATTATHIP 12° 41′,  101° 01′
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Table 1. (continued)

Station 
number

Station Code        Province Location (latitude; N, longitude; E)

26 480201 CHANTHA BURI 12° 37′ , 102° 07′
27 500201    PRACHUAP KHIRIKHAN 11° 50′ , 99° 50′
28 517201    CHUMPHON 10° 29′ , 99° 11′
29 552201    NAKONSI THAMMARAT 8° 28′ , 99° 58′
30 532201    RANONG 9° 59′ , 98° 37′
31 564201    PHUKET 7° 58′ , 98° 16′
32 567201    TRANG AIRPORT 7° 31′ , 99° 32′
33 568501    SONGKHLA 7° 12′ , 100° 36′
34 583201    NARATHIWAT 6° 25′ , 100° 49′
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A relatively stable network of stations and consistency in operational procedures 
ensure that the quality of surface weather observations in Thailand, for climate studies, is 
somewhat good (Ouprasitwong, 2002; Brikshavana and Ouprasitwong, 2002).  However, 
the obtained data set was subject to further quality control procedures. Two types of 
erroneous data were identified. The first was an abrupt shift in mean values, associated 
with station relocations. According to station history information, there were five 
stations (CHIANG RAI, KHON KAEN, BANGKOK METROPOLIS, SURAT THANI 
and NAKHONSI THAMMARAT) that locations were changed during 1990-2000 
(Ouprasitwong, 2002). Ouprasitwong (2002) used Multiple Analysis of Series for 
Homogenization (MASH) to examine homogeneity of rainfall data, and found that 
inhomegeneity of rainfall data at stations BANGKOK METROPOLIS and NAKHONSI 
THAMMARAT coincided with the years of station relocations. The MASH program can, 
however, provide the reliable results only for rainfall data (Ouprasitwong, 2002). Thus, 
the non-parametric Mann-Whitney statistic (UBkB) for testing that two samples (xB1B, xB2B, …, 
xBpB) and (xBp+1B, xBp+2B, …, xBp+nB) come from the same population is alternatively suitable for 
examining the occurrence of an abrupt change in other climatic variables (Petitt, 1979; 
Demaree and Nicolis, 1990). An analysis can be done by partitioning the series into two 
sub-period, before and after site moves, and calculated UBkB from: 

where MBiB is the rank of the ith observation when the values xB1B, xB2B, …, xBNB in the series are 
arranged in ascending order. The results of two-sided Mann-Whitney test indicate that 

(Table 2) only temperature value at station BANGKOK METROPOLIS was 
significantly different between before and after station relocation, and this data record 
was then excluded for the EOF analysis. Moreover, the remaining station records were 
visually inspected for any abrupt shift, but there was no evidence for such changes. The 
geographical distribution of 33 selected weather stations is shown in Fig. 1. The second 
type of erroneous data involved outlier data that may have been introduced either due to 
data-entry, data observing or transmitting procedure biases were identified and excluded 
according to statistical criteria. An objective approach eliminated apparent statistical 
outliers, which exceeded specified acceptable range, was arbitrarily set 3 standard 
deviation from monthly mean (mean ± 3SD) (Limsakul et al., 2001). Any existing errors, 
which could not be detected by the statistical methods were usually random and 
equivalent to “noise”.

From 1951 to 2003, each of the station records is, on average, 98% complete, and the 
overall dataset has only 1.7% missing values. There were missing data in some years and 
months particularly during 1951-1955 when more data are missing (Fig. 2). However, 
small amounts of random missing data should not introduce significant biases in 
temporal trends, since data used to the EOF analysis consist of many stations. To further 
prevent missing data from introducing any bias, monthly climatological means 
calculated from entire record were used for missing values. 

2.3. EOF computation using the scatter matrix method

)1N(kM2U
k

1i
ik +−= ∑

=
(27)
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Details of the covariance matrix approach can be found in Preisendorfer (1988) and 
Emery and Thomson (1997). This recipe, which is only one of several possible 
procedures that can be applied, involves the preparation of the data and the solution of 
equation (9) as follows:

1. Construct the n x p matrix Z in equation (1), by organizing the n rows (times) and 
p columns (locations) of the original data. In case of surface air temperature data
used here that were collected at 33 stations and from 1951 through 2003 (53-year 
period), n = 1, …, 636 (53 years x 12 months) and p = 1, …, 33. Care should be 
taken to ensure that the start and end times for all p time series of length n are 
identical.

2. Compute the climatological monthly means using equation (2) and subtract them 
from original data, z(t,x), in the equation (3). The new n x p matrix Z′ can be 
formed in the manner of equation (1), but consists of the anomalies or departure 
from climatological monthly means (4). Note that the anomalies of all missing 
values are equal to 0, since climatological monthly means are used for those 
missing data. 

3. Construct the spatial covariance matrix RBzz′ Bby using equations (5), (6) and (7).
4. Solve eigenvalue-eigenvector problems which RBzz′ Bis decomposed into eigenvalues 

and eigenvectors in the equations (9), (10) and (11).
      5. Compute time-dependent amplitude, aBkB(t), by projecting the original data series 

onto eigenvector in equation (15).
 6. Calculate the percentages of the variance explained by each mode, using equation 

(21).   
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Table 2. Results of the two-sided Mann-Whitney test for monthly averaged mean temperature before and after site moves for 4 stations.

Station Period before/after site 
move

N Median
(°C)

Uk p-value

CHIANG RAI 1951-1991
1992-2003

492
143

25.6
25.6

-0.10 0.92

KHON KAEN 1951-1997
1998-2003

564
72

27.4
27.2

-0.95 0.34

BANGKOK METROPOLIS    1951-1993
1993-2003

515
120

27.9
29.0

-7.63 <0.001

NAKHONSI THAMMARAT 1951-1997
1998-2003

501
72

27.4
27.4

-0.73 0.47

N – number of observations; Uk – Mann-Whitney statistic
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Fig. 1. Geographical distribution of 33 selected weather stations used in this study. The 
atmospheric variables used to analysis are monthly averaged mean, maximum and 
minimum temperatures and dewpoint temperature collected from 1951 to 2003.   
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Fig. 2.  Monthly percentage of data coverage for 33 stations used in this study. 
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3.  Results

3.1. Physical interpretation of EOF analysis

An EOF analysis generates three types of output. First the eigenvalues together 
with the percentage of the total variance of each EOF mode are given. In the EOFs these 
equal the variance accounted by each mode. Also provided are the eigenvectors for each 
EOF mode. Each eigenvector is composed of values called the component loadings for 
that mode. These loadings are usually presented as correlation coefficients between each 
time series and the associated time-dependent amplitudes, and may be considered a 
measure of the relative importance of each time series in the extracted EOF mode. The 
sum of the squared correlations for each EOF mode equals the associated eigenvalue. If, 
for example, surface air temperatures at stations 1, 2 and 3 have high positive loadings 
on the leading EOF mode and that at station 4 has a high negative loading, this means 
that the largest proportion of the variance in the original data can be accounted for by 
the trends in these four stations. The different signs indicate that surface air temperature 
at station 4 has high values in a certain set of time steps, whereas surface air 
temperatures at stations 1, 2 and 3 have high values in a completely different set of time 
steps. The third set of results is a matrix of time-dependent amplitudes or component 
scores. These series describe the evolution of the EOF’s with time. One set of time-
dependent amplitudes is provided for each of EOF mode, and each time-dependent 
amplitude corresponds to one time step. This is computed by simply multiplying the 
component loadings by the original data. 

According to Peixoto and Oort (1992), one way to understand the basic idea 
behind EOFs is to imagine that each of the n time series as a vector fBnB in the p-
dimensional space, such that :

fBnB = {fBn1B, fBn2 B, …, fBnpB}    at time   t = n .

Each vector fBnB includes the values of field f at all location x = 1, …, p for a given time n. 
Each of n data vectors is directed from origin to a point in the p space (Fig. 3). If there 
exists some correlation between the n vectors, we expect that their extremities will be 
organized in cluster or along some preferred directions. The problem we want to solve 
with the EOF decomposition is to find an orthogonal basis {eB1B, eB2B, …, eBpB} in the p-
dimensional space, instead of the original basis, such that vector eB1B best represents the 
largest cluster of the original data vectors, eB2B best represents the second largest cluster of 
the original data vectors, and so on. In other words, eB1B accounts for the largest portion of 
the data variance, eB2B for the second largest portion, and so on (Fig. 3).  This is 
equivalent to find a set of p vector eBpB whose orientation is such that the sum of the 
squares of the projections of all the n observation vectors fBnB onto each eBpB is maximized 
sequentially. The vectors eBx B, x =  1, …, p are mutually orthogonal and they are what we 
called the EOFs. If all possible EOF modes are used, then they define a space which has 
the same dimension as the original variable space and, hence, completely account for the 
variance in the original data.  However, there is no advantage in retaining all of the EOF 
modes since there would have as many EOF modes as original variable and, thus, would 
not have simplified matters.       

The first step is to decide on how many EOF modes are needed to adequately 
describe the dominant spatio-temporal characteristics of surface air temperatures, 
dewpoint temperature and apparent temperatures in Thailand. The scree plot proposed 
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Fig. 3. Example of a possible configuration of the data vectors fBnB (n =1… N denote the 
time steps) and the empirical orthogonal vectors eBmB, m = 1…M. From Peixoto and Oort 
(1992).
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by Cattell (1966) is one of the good rules of thumb, providing a means of assessing how 
many EOF modes to retain. It is constructed by simply plotting either eigenvalues or 
percentage of the total variance of each EOF mode in descending order to produce a line 
graph. Since the leading EOF mode has the largest eigenvalue or the largest percentage 
of the total variance, and the following ones are in descending value, this produces a line 
graph that slopes down to the right. By looking for the point where a pronounced change 
in the slope occurs, how many EOF modes to retain can thus be decided. It should be 
noted that this criterion is somewhat arbitrary, and how many and which EOF modes to 
retain depend, in part, upon the goals of the analysis. 

The scree plots for individual and cumulative percentages of the total variance of 
monthly averaged mean, maximum and minimum temperatures (TBmeanB, TBmaxB, TBminB), 
monthly averaged mean dewpoint temperature (TBdewB) and monthly averaged mean, 
maximum and minimum apparent temperatures (TBameanB, TBamaxB,B BTBaminB) are presented in 
Figs. 4, 5 and 6. What stands out from Figs 4, 5 and 6 is that steep slopes are evident 
from the first to the second EOF modes and the remaining EOF modes can be fitted 
fairly well by a straight line of negligible slope. The EOF1 mode of all seven 
temperature variables accounts for substantial amount of the total variance ranging from 
61.2% to 71.3%, whereas the remaining modes explain considerably less. These patterns 
of scree plots indicate that only the first mode is physically meaningful in determining 
the dominant mode of variability, and higher order modes are potentially mixed and 
non-interpretable due largely to climatic noise associated with high-frequency variability 
in the climate system. Consequently, by using Cattell’s scree criterion, only the EOF1 
mode was retained to describe spatio-temporal characteristics of all temperature 
variables.

The loadings on the EOF1 mode of all seven temperature variables are graphically 
illustrated in Figs. 7-13. A visual examination reveals that the EOF1 mode of each 
temperature variable has positive correlations with all stations, and correlation 
coefficients are relatively high and are about the same magnitude, excepting for a few 
stations in the south. High (r >0.5) and low (r <0.5) loadings on the leading modes range 
from 75% to 90% and from 10% to 25%, respectively. These loading patterns strongly 
indicate that temperature data at all stations in Thailand are highly intercorrelated and 
nearly equally important in defining the EOF1 mode. Thus, it can be appropriately 
viewed that the EOF1 mode is a robust representative of the dominant spatio-temporal 
structures of TBmeanB, TBmaxB, TBminB, TBdewB,B BTBameanB, TBamax  BandB BTBaminB in Thailand.   

Time evolution of the leading mode of all seven temperature variables is shown in 
the time series of their coefficients (Figs. 14, 15 and 16). Note that units are arbitrary, 
because of EOF calculation based on covariance matrix. As can be seen, all series 
exhibit irregular oscillations, due to a mixture of several signals of variability contained 
in the time series. As indicated by the integral timescales, all series form complex long-
term patterns and are rather noisy, which month-to-month variations are prominent, 
superimposed on much lower-frequency variations with timescales of a few years or 
longer. Some underlying periodic oscillations and trends also seem to be present in the 
time series. A visual inspection further reveals that two series of TBminB and TBamin Bdo 
appear to contain the dominant long-term trends. However, inferences about the 
dominant temporal characteristics of the leading modes from unsmoothed series are 
relatively obfuscating, due to the presence of various scales of motion in time series. In 
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order to gain insight on the particular signals blended together and hidden inside a noisy 
time 

Fig. 4.  Scree plot for EOF analysis of monthly averaged mean, maximum, minimum 
temperatures (TBmeanB, TBmaxB, TBminB) collected during 1951-2003 and at 33 stations in 
Thailand.

Fig. 5. Scree plot for EOF analysis of monthly averaged mean dewpoint temperature 
(TBdewB) collected during 1951-2003 and at 30 stations in Thailand.
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Fig. 6. Scree plot for EOF analysis of monthly averaged mean, maximum and minimum 
apparent temperatures (TBaaB, TBamaxB,B BTBaminB) calculated by using surface air temperature and 
dewpoint temperature collected during 1951-2003 and at 29 stations in Thailand. 

0 5 10 15 20 25 30
Mode number

0

20

40

60

80

100

%
of

to
ta

lv
ar

ia
nc

e

0

20

40

60

80

100

C
um

ul
at

iv
e

%
of

to
ta

lv
ar

ia
nc

e

Taa

Tamax

Tamin



34

Fig. 7. Loadings on the EOF1 mode of monthly averaged mean temperature. The 
loadings are correlation coefficients between each time series and the first time-
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dependent amplitudes. The sizes of blue cycles are proportional to correlation 
coefficients. 
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Fig. 8.  Loadings on the EOF1 mode of monthly averaged maximum temperature. The 
loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation 
coefficients. 
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Fig. 9. Loadings on the EOF1 mode of monthly averaged minimum temperature. The 
loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation 
coefficients. 
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Fig. 10.  Loadings on the EOF1 mode of monthly averaged dewpoint temperature. The 
loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation 
coefficients. 
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Fig. 11.  Loadings on the EOF1 mode of monthly averaged mean apparent temperature. 
The loadings are correlation coefficients between each time series and the first time-
dependent amplitudes. The sizes of blue cycles are proportional to correlation 
coefficients.
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Fig. 12.  Loadings on the EOF1 mode of monthly averaged maximum apparent 
temperature. The loadings are correlation coefficients between each time series and the 
first time-dependent amplitudes. The sizes of blue cycles are proportional to correlation 
coefficients.
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Fig. 13. Loadings on the EOF1 mode of monthly averaged minimum apparent 
temperature. The loadings are correlation coefficients between each time series and the 
first time-dependent amplitudes. The sizes of blue cycles are proportional to correlation 
coefficients.
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Fig. 14.  Coefficient time series of the EOF1 mode. Units are relative. 
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Fig. 15. Same as in Fig. 14. 

Fig. 16. Same as in Fig. 14.
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series, undesired scales of variability must first be removed. The interesting signals can 
then be examined in isolation without the complications of the other features. The trend 
and other components can be separated by a smoothing technique (Chatfield, 1989; 
Jassby and Powell, 1990; Emery and Thomson, 1997). Smoothing always involves some 
form of local averaging of data such that the nonsystematic components of individual 
observations cancel each other out. The most common method is moving average 
smoothing which replaces each element of the series by simple average of n adjacent 
element, where n is the width of smoothing window (Chatfield, 1989; Jassby and Powell, 
1990; Emery and Thomson, 1997; Eskridge et al., 1997). By modifying the window size, 
the filtering of different scales of motion can be controlled. 

To further investigate and compare the standing temporal evolution of the 
leading mode with the well-known modes of global climate variability, each unfiltered 
series was decomposed into interannual (1-5 years) and decadal (longer than 5 years) 
timescales. The two different timescales were chosen on the basis that the separated 
interannual variability corresponds to the ENSO cycles, while decadal fluctuations 
represent long-term behavior of variables. Decomposition of the coefficient time series 
can be done by first applying a centered 60-term moving average. The resulting filtered 
series represent long-term variations. Interannual variability was subsequently estimated 
by subtracting the smoothed from the original series, forming the residual series. A 
centered 10-term moving average was then employed to the residual series to eliminate 
the variability less than ten months. 

3.2. Temporal variability of EOF1 coefficients series and its relation to ENSO 
signature

3.2.1. Fundamental mechanisms of ENSO and the commonly used indices 

The term El Niño is widely used to refer to a phenomenon associated with the 
unusually warm water that occasionally forms across much of the tropical eastern and 
central Pacific (Fig. 17). The time between successive El Niño events is irregular but 
they typically tend to recur every 2 to 7 years (e.g., Horel and Wallace, 1981; Philander, 
1990; Trenberth, 1984, 1997; McPhaden, 1999). A La Niña is the counterpart to an El 
Niño and is characterized by cooler than normal Sea Surface Temperatures (SSTs) 
across much of the equatorial eastern and central Pacific (Fig. 18). A La Niña event 
often, but not always, follows an El Niño and vice versa. Once developed, both El Niño 
and La Niña events tend to last for roughly a year although occasionally they may 
persist for 18 months or more. El Niño and La Niña are both a normal part of the earth’s 
climate and there is recorded evidence for their occurrence for hundreds of years 
(Trenberth, 1997; Gill and Rasmusson, 1983; Gu and Philander, 1995; Huber and 
Caballero, 2003; Fedorov and Philander, 2000).

Although El Niño and La Niña events are characterized by warmer or cooler 
than average SSTs in the tropical Pacific, they are also associated with changes in 
patterns of wind, pressure, rainfall, air temperature and total cloudiness fraction of the 



45

sky (Horel and Wallace, 1981; Philander, 1983, 1990; McPhaden, 1999). Schematic 
views of the links between SSTs and other atmospheric components are illustrated in 
Fig. 19. In normal conditions, the trade winds blow towards the west across the tropical 
Pacific. These winds pile up warm surface water in the western Pacific, so that the sea 
surface is about 0.5 meter higher at Indonesia than at Ecuador. The SST is about 8 °C
higher in the west, with cool temperature off South America, due to an upwelling of 
cold water from deeper levels (Fig. 19a). Rainfall is found in rising air over the warmest 
water, and the east Pacific is relatively dry (Fig. 19a). During El Niño events, the trade 
winds relax in the central and western Pacific leading to strong countercurrent which 
carries warm water across the equatorial region, and a depression of the thermocline in 
the eastern Pacific and an elevation of the thermocline in the west (Fig. 19b). This 
reduces the efficiency of upwelling to cool the surface, resulting in a dramatic rise in 
SST off South America (Fig. 19b). Rainfall follows the warm water eastward, with 
associated flooding in Peru and drought in Indonesia and Australia (Fig. 19b). The 
eastward displacement of the atmospheric heat source overlying the warmest water 
results in large changes in the global atmospheric circulation, which in turn force 
changes in weather in remote regions far from the tropical Pacific (Troup, 1965; Horel 
and Wallace, 1981; Wallace and Gutzler, 1981). While, La Niña conditions could be 
thought of as an enhancement of normal condition. During these events the trade winds 
strengthen, colder than average ocean water extends westward to the central Pacific, and 
the warmer than average SSTs in the western Pacific are accompanied by heavier than 
usual rainfall (Fig. 19c). 

While the tropical ocean affects the atmosphere above it, so too does the 
atmosphere influence the ocean below it. In fact, the interaction of the atmosphere and 
ocean is an essential part of El Niño and La Niña events (the term coupled system is 
often used to describe the mutual interaction between the ocean and atmosphere). 
During an El Niño, sea level pressure tends to be lower in the eastern Pacific and higher 
in the western Pacific, while the opposite tends to occur during a La Niña. This see-saw 
in atmospheric pressure between the eastern and western tropical Pacific is called the 
Southern Oscillation (SO). The main centers of action of the SO are situated around 
Darwin (12.4 °S 130.9 °E) in the northern Australia and Tahiti (17.5 °S 149.6 °W) in the 
South Pacific (Fig. 20). Therefore, the difference in sea level pressures between the 
points has been long used as a standard measure of the SO (Troup, 1965). Since El Niño 
and the Southern Oscillation are related, the two terms are often combined into single 
phrase the El Niño-Southern Oscillation, or ENSO (Troup, 1965; Trenberth, 1984, 
1997).

Several indices have been used to monitor ENSO. They have conventionally 
been calculated based only on sea level pressures at a combination of a few stations 
situated primarily near the main center of action of ENSO. These usually only involve 
those at Darwin and Tahiti (Troup, 1965; Trenberth, 1984, 1997; Ropelewski and Jones, 
1987; Kiladis and van Loon, 1988). A drawback of this index is that it is based on the 
pressures at two points and therefore can easily be affected by local weather 
disturbances, making it somewhat “noisy” when viewed on a month-to-month basis. In 
recent decades, the indices based on SSTs have come into common usage because 
satellite and an observing network of buoys in the equatorial Pacific now allow for 
collection real time, high quality data. Indices based on SSTs (or, more often, its 
departure from long-term average) are those obtained by simply taking the average 
value over some specified region of the ocean (Wang, 1995; Trenberth and Hoar, 1996; 
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Trenberth, 1997). There are several regions of the tropical Pacific Ocean that have been 
highlighted as being important for monitoring and identifying El Niño and La Niña. The 
most common ones are illustrated in Fig. 21. For widespread global climate variability, 
NINO3.4 is generally preferred, because the SST variability in this region has the 
strongest effect on shifting rainfall in the western Pacific. This in turn leads to shift the 
location of rainfall from the western to central Pacific which modifies greatly where the 
location of the heating that drives the majority of the global atmospheric circulation. 
Newly generated version of index is the Multivariate ENSO Index (MEI) calculated as 
the first unrotated Principal Component of all six observed variables over the tropical 
Pacific (Wolter and Timlin, 1993, 1998). These six variables are: sea level pressure, 
zonal and meridional components of the surface wind, sea surface temperature, surface 
air temperature and total cloudiness fraction the sky. The MEI is computed separately 
for each of twelve sliding bi-monthly seasons (Dec/Jan, Jan/Fec , …, Nov/Dec). 
Negative values of the MEI represent the cold ENSO phase (La Niña), while positive 
MEI values represent the warm ENSO phase (El Niño). Since the MEI integrates more 
information than other indices, it fully reflects the nature of the coupled ocean-
atmosphere system, and thereby is better for monitoring ENSO phenomenon, including, 
for instance, world-wide correlations with surface temperatures and rainfall than the SOI 
or SST-based indices (Wolter and Timlin, 1993, 1998). To make the MEI comparable 
with the monthly coefficient time series of EOF1 mode of TBmeanB, TBmaxB, TBminB, TBdewB,B BTBameanB, 
TBamax  Band B BTBaminB, the MEI values of month (i-1) and month (i) were averaged for the 
value of month (i), and the MEI series was then decomposed into interannual and 
decadel timescales.   

3.2.2. Interannual variability of EOF1 coefficient series and its relationship with 
ENSO events 

Residual EOF1 coefficient series of all seven temperature variables, after the 
fluctuations less than ten months were removed, exhibit a salient mode of interannual 
variability (Figs. 22, 23, 24, 25, 26, 27 and 28). All series show strong negative and 
positive signs, and the oscillations between maxima and minima with period of about 1-
4 years stand out as reasonably clear signals above the otherwise noisy background of 
short- term climatic fluctuations. The results from variance analysis reveal that 
variability on interannual timescale for all seven temperature variables ranges from 17.6 
to 25.8 % of the total variance (Table 3). A closer examination of the data indicates that 
interannual variability of all but TBminB accounts for the second source of the total variance 
(Table 3). A noteworthy feature emerged from Figs. 22-29 is that the interannual 
variability patterns of  all seven temperature variables resemble that of MEI, and the 
anomalously positive/negative time-varying amplitudes of the EOF1 mode of them 
appear to be in phase with the warm/cold phase of ENSO (positive/negative MEI). 
There is a clear indication that TBmeanB, TBmaxB, TBminB, TBdewB,B BTBameanB, TBamax BandB BTBaminB in Thailand 
tend to warmer (colder) than normal during El Niño (La Niña) phase of ENSO. During 
the 6 strongest historic El Niño events, for example, all these variables were 
prominently higher than normal (Table 4), while they were anomalously lower than 
average during the 8 strongest historic La Niña events (Table 5). Moreover, the EOF1 
coefficient series of all seven temperature variables underwent largest interannual 
variability during the recent extreme phase reversals of ENSO, when the 1997-98 El 
Niño, by some measures the strongest on record, was followed by the strong 1998 -2000 
La Niña. A nonparametric Spearman rank correlation test provides further evidence that 
there were significant positive correlations between each smoothed EOF1 coefficient 
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series of surface temperature variables and the 10-term smoothed MEI series, for the 47-
year period (Table 6). It is readily seen that the 10-term smoothed EOF1 coefficient 
series of TBmeanB, TBmaxB, TBamean B and TBamax Bhave high correlations with that of the MEI, with 
correlation coefficients higher than 0.5 (Table 6). The similar but less pronounced 

Fig. 17. An example of departure of sea surface temperature from the long-term average
for an El Niño event during December 1991. Yellow shading indicates warmer than 
average temperatures. Units are °C and contours are drawn at 0.5 °C intervals. Note that 
this picture was obtained from website of International Research Institute for climate
prediction (http://iri.columbia.edu/climate/ENSO). 

Fig. 18. An example of departure of sea surface temperature from the long-term average 
for a La Niña event during December 1998. Blue shading indicates colder than average 
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temperatures. Units are °C and contours are drawn at 0.5 °C intervals. Note that this 
picture was obtained from website of International Research Institute for climate 
prediction (http://iri.columbia.edu/climate/ENSO). 
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Fig. 19. Schematic views of the links between SSTs and tropical atmospheric variables 
in the equatorial Pacific ocean during normal (a), El Niño (b) and La Niña conditions (c). 
SSTs are shaded: blue-cold and orange-warm. The dark arrows indicate the direction of 
air movement in the atmosphere: upward arrows are associated with clouds and rainfall 
and downward-pointing arrows are associated with a general lack of rainfall.  Note that 
this picture was obtained from website of International Research Institute for climate 
prediction (http://iri.columbia.edu/climate/ENSO). 

Fig. 20. The main centers of action of the Southern Oscillation. Tahiti and Darwin are at 
opposite ends of the Southern Oscillation’s seesaw, and so the difference in pressure 
between them is used to measure the Southern Oscillation. The figure shows that 
pressure variation at Tahiti is as closely related to Darwin as are locations near to 
Darwin, but with the opposite sign.    Note that this picture was obtained from website 
of International Research Institute for climate prediction 
(http://iri.columbia.edu/climate/ENSO). 
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Fig. 21. The NINO regions. The thin grey line in the center is the equator.  Note that this 
picture was obtained from website of International Research Institute for climate 
prediction (http://iri.columbia.edu/climate/ENSO). 

Fig. 22. The EOF1 coefficient series of TBmeanB residuals (original series minus 60-term 
smoothed series) (a) and 10-term smoothed TBmeanB residuals (b).
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Fig. 23. The EOF1 coefficient series of TBmaxB residuals (original series minus 60-term

smoothed series) (a) and 10-term smoothed TBmaxB residuals (b).

Fig. 24. The EOF1 coefficient series of TBminB residuals (original series minus 60-term 
smoothed series) (a) and 10-term smoothed TBminB residuals (b).
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Fig. 25. The EOF1 coefficient series of TBdewB residuals (original series minus 60-term 

smoothed series) (a) and 10-term smoothed TBdewB residuals (b).

Fig. 26. The EOF1 coefficient series of TBameanB residuals (original series minus 60-term 
smoothed series) (a) and 10-term smoothed TBameanB residuals (b).
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